
AD-A241 322 pI I i t11111 11111 li t11111 ii1!

NAVAL POSTGRADUATE SCHOOL
Monterey, California

, ~i A I :I

OTICFELECT v - .
OCT 10 19911 I

THESIS

DESIGN AND IMPLEMENTATION OF AN INTELLIGENT
COST ESTIMATION MODEL FOR DECISION

SUPPORT SYSTEM SOFTWARE

by

William E. Blazer

September 1990

Thesis Advisor: Tung X. Bui

Approved for public release; distribution is unlimited

91-12679

UNCLASSIFIED
SECURITY CLASSFICATION F i ' r -,

REPORT DOCUMENTATION PAGE

la. REPORT SECURITY CLASSIFICfi,, - b ,ESTRICTIVE MARKINGS

UNCLASS IFIED
2a. SECURITY CLASSIFICATION AUTHOR!TY 3 DISTRIBUTIONIAVAILABILITY OF REPORT

2b DECLASSIFICAT ION/DOWNGRADIN SCHEDLE Approved for public release;
distribution is unlimited

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5 MONITORING ORGANIZATION REPORT NUMBER(S)

6a. NAME OF PERFORMING ORGANIZATION 6b OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION

(if applicable)

Naval Postgraduate School Code 37 Naval Postgraduate School

6c. ADDRESS (City, State, and ZIP Code) 7b ADORESS(City, State, and ZIP Code)

Monterey, California 93943-5000 Monterey, California 93943-5000

Ba. NAME OF FUNDING/SPONSORI G 8D OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMSER
ORGANIZATION (If applicable)

8c. ADDRESS (City, State. and ZIP Coae) 10 SOURCE OF FUNDING NUMBERS
PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO, NO NO ACCESSION NO.

11 TITLE (Include Security Classificalion)

DESIGN AND IMPLEMENTATION OF AN INTELLIGENT COST ESTIMATION MODEL FOR DECISION
SUPPORT SYSTEM SOFTW7ARE
12. PERSONAL AUTHOR(S)

Blazer, William E.
13a. TYPE OF REPORT 13b TIME COVERED 14. DATE OF REPORT !Year, Month, Day) 15 PAGE COUNT

!MIlaster's Thesis FROC' TO 1990, Septenmer 126

16 SUPPLEMENTARY NOTATION

The views expressed in this thesis are those of the at:thor and do not reflect the official
Dolic' or position of the Department of Defense or the U.S. Governrent.
17 COSATI CODES 16 SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

FIELD GROUP SUB-GROL P Software Cost Estimation Model; COCOMO;

Function Point

19 ABSTRACT (Continue on reverse if necessary and identify by block number)

Recently, Decision Support Systems (DSS) have increased in importance and

usc'ge. However, these increases have not carried over into developing better

models to estimate the real cost of developing the DSS. This thesis explores

variouq estimation methods that seem pertinent to DSS. It advocates the use of

a combination of modeling tools particularly tailored to the users' environment.

7n Intelligent Cost Estimation Model (ICEM) for Decision Support System softwar

is proposed. To promote user-friendliness, ICEM uscs a rule-based front-end
interface coupled to a spreadsheet program. For comparison purposes the curren

ersion of ICEM includes the Intermediate COCOMO model, the Intermediate COCOMO

odel particularly calibrated for the in-house DSS development environment, and

parametric model which incorporates the function point size metric.

20 DISTRIBUTIONiAVAILABiLITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION

,,.UNCLASSIFIEDIUNLIMITED El SAME AS DOT E DTIC USERS Unclassified
22a. NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE (Include Area Code) cc OFFICE SYMBOL

Prof. Tung X. Bui A, nr C A(2 , Code AS Bd

F , . 473, b4 MAR 83 APR ed~tion may be used until exhausted SECURITY CLASSIFICATION OF THIS PAGE
All other editors are obsolete * U.S. O I*V9 Wf IWI 0(1109- 11111 0-011424.

UNCLASSIFIED

Approved for public release; distribution is unlimited

Design and Implementation of an Intelligent Cost Estimation
Model for Decision Support System Software

by

William E. Blazer
Lieutenant, United States Navy

B.S., Virginia Military Institute, 1984

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN INFORMATION SYSTEMS

from the

NAVAL POSTGRADUATE SCHOOL
September 1990

Author:
William/E. Blazer

Approved by: _ _ _ _ _ _ ___ _

Tung X. Bui, Thesis Advisor

Tarek Abdel-Hamid, Second Reader

David R. Whippl, Chairban,
Department of Administrative Sciences

,. ii

ABSTRACT

Recently, Decision Support Systems (DSS) have increased in

importance and usage. However, these increases have not

carried over into developing better models to estimate the

real cost of developing the DSS. This thesis explores various

estimation methods that seem pertinent to DSS. It advocates

the use of a combination of modeling tools particularly

tailored to the users' ervironment. An Intelligent Cost

Estimation Model (ICEM) for Decision Support System software

is proposed. To promote user-friendliness, ICEM uses a rule-

based front-end interface coupled to a spreadsheet program.

For comparison purposes the current version of ICEM includes

the Intermediate COCOMO model, the Intermediate COCOMO model

particularly calibrated for the in-house DSS development

environment, and a parametric model which incorporates the

function point size metric.

Aooession For
NTIS (RA&I

DTIC TfiB 0l
Una!uiounced Q
Justification

Distribution/

Avail and/cr

Dist Speclalr 'i I

THESIS DISCLAIMER

The reader is cautioned that computer programs developed

in this research may not have been exercised for all cases of

interest. While every effort has been made, within the time

available, to ensure that the programs are free of computa-

tional and logic errors, they cannot be considered validated.

Any application of these programs without additional verifica-

tion is at the risk of the user. Additionally, the ICEM

program is available from the thesis advisor, however, since

VP-Expert and VP-Planner Plus are a copyright of Paperback

Software International, they can not be included for

distribution.

iv

TABLE OF CONTENTS

I. INTRODUCTION---1

A. BACKGROUND---I

B. SCOPE---1

C. METHODOLOGY--------------------------------------- 2

D. ORGANIZATION--------------------------------------3

II. A FRAMEWORK TO CLASSIFY COST ESTIMATION
MODELS--4

A. BASILI'S CLASSIFICATION SCHEME------------------5

B. THIBODEAU'S CLASSIFICATION SCHEME---------------7

C. SUMMARY-- 9

III. SIZE METRICS-- 11

A. SOURCE LINES OF CODE---------------------------- 11

B. FUNCTION COUNTS----------------------------------'1,2

C. HALSTEAD'S SOFTWARE SCIENCE-------------------- 13

D. FUNCTION POINTS---------------------------------- 15

E. OTHER PRODUCT ATTRIBUTES------------------------ 17

IV. EXISTING COST ESTIMATION MODELS-------------------- 19

A. BACKGROUND--19

B. COST ESTIMATION MODELS---------------------------20

C. SUMMARY--- 27

V. COCOMO MODEL---29

A. OVERVIEW-- 29

B. BASIC MODEL-------------------------------------- 29

V

C. INTERMEDIATE COCOMO----------------------------- 33

D. CALIBRATING THE COCOMO MODEL--------------------36

VI. FUNCTION POINT ANALYSIS MODEL-----------------------39

A. BACKGROUND--39

B. CALCULATING FUNCTION POINTS-------------------- 40

C. STEPS (1 & 2) COUNT AND CLASSIF7 FUNCTION
TYPES--- 40

D. (STEP 3) ADJUST FOR PROCESSING COMPLEXITY -- 48

E. (STEP 4) MAKE THE FUNCTION POINTS
CALCULATION-------------------------------------- 49

F. SUMMARY--51

VII. INTELLIGENT COST ESTIMATION MODEL (ICEM)------------52

A. INTRODUCTION------------------------------------- 52

B. OVERALL ARCHITECTURE OF ICEM--------------------54

VIII. USING ICEM FOR EFFORT ESTIMATION OF DSS
SOFTWARE-- 59

A. INTRODUCTION------------------------------------- 59

B. THE DSS DATABASE--------------------------------- 59

C. CALIBRATING THE COCOMO MODEL FOR DSS------------63

D. DISCUSSIONS-------------------------------------- 65

IX. CONCLUSIONS AND RECOMMENDATIONS-------------------- 67

A. CONCLUSIONS-------------------------------------- 67

B. RECOMMENDATIONS FOR FURTHER RESEARCH-----------68

APPENDIX A: SAMPLE SESSION---------------------------------69

APPENDIX B: SOURCE CODE-----------------------------------80o

LIST OF REFERENCES--- 115

INITIAL DISTRIBUTION LIST--------------------------------- 119

vi

I. INTRODUCTION

A. BACKGROUND

Recently, Decision Support Systems (DSS) have increased in

importance and usage. Likewise, there has been an increase in

literature regarding the design and development of DSS

software. Unfortunately, these increases have not carried

over into developing better models to estimate the real cost

of developing the DSS. Current literature argues that a DSS

should be developed quickly and inexpensively; however, user

requirements in terms of interface and modeling capabilities

often significantly increase development cost [Ref. 1].

As the cost of software projects has soared over the past

decade there have been several attempts to develop cost

estimation models that would allow a manager to accurately

predict the development cost of software projects. Some of

these models are addressed in Chapter IV. With cost and

demand for new software at an all-time high and increasing

backlogs of undeveloped software projects, the development of

better cost estimation models is more important today than it

ever has been.

B. SCOPE

The purpose of this thesis is to explore the possibility

of combining the advantages of parametric and heuristic

modeling to better estimate the development cost of DSS

software.

The main thrust of this study will be in the design and

implementation of an Intelligent Cost Estimation Model (ICEM)

that would allow a DSS builder to predict and refine

development cost. Due to the considerable difficulty of DSS

software estimation, this work will focus on small scale DSS

applications developed by small programming groups whose

development tools consist of high level programming languages.

Furthermore, it will concentrate on developing a calibrated

model for the DSS environment based on the COCOMO and function

point concepts.

C. METHODOLOGY

When estimating the cost of software development the

quality of the estimation depends upon the precision of the

software specification. By their nature, Decision Support

Systems deal with ill-defined problems. This, in turn, makes

it difficult tc accurately estimate the cost of developing the

DSS. Two research methodologies can be applied in developing

cost estimation models. These include the parametric and

heuristic approaches. This research attempts to combine these

two approaches to gain some insights on the DSS cost behavior.

An integrated design approach will be used to implement the

model. It will consist of a rule-based expert system which is

coupled to a spreadsheet model. The expert system is used to

2

gather heuristic information for cost estimation, while the

spreadsheet provides the framework for the parametric model

which performs statistical calculations.

D. ORGANIZATION

This thesis is broken down into nine chapters with two

appendices. After the introduction in Chapter I, the thesis

begins in Chapter II by first looking at the framework in

which cost estimation models are classified. The issue of

size metrics and how they effect the development of cost

estimation models are addressed in Chapter III. Different

methods used in measuring software size are also addressed in

this chapter along with the advantages and disadvantages of

each metric. Chapter IV presents an overall review of several

cost estimation models currently available. The COCOMO and

Function Point models are studied in greater detail in

Chapters V and VI respectively. The ICEM model is presented

in Chapter VII. Chapter VIII provides an empirical analysis

of the ICEM model based on collected data. Due to the

inaccurate nature of some required information, calibration

was performed only for the COCOMO model. Chapter IX contains

the conclusion and future recommendations. A sample session

with the ICEM model showing screen formats is provided in

Appendix A. Finally, the source code for the ICEM model is

provided in Appendix B.

3

iI. A FRAMEWORK TO CLASSIFY COST ESTIMATION MODELS

There have been many models developed to estimate the cost

of software development. Most of these models are empirical

models that use information gathered from previous projects to

make future predictions of current projects such as time,

effort, and cost requirements. They derive basic equations

from past projects using statistical tools such as linear

regression. Models tyrically utilize one or a combination of

five major parameters for estimation: prodictivity, schedule,

cost, quality, and size. The most common parameter used for

estimation is size (see Chapter III).

Models have been classified under many different formats.

Many models are defined as being either micro or itacro models.

A micro model derives effort estimations from small pieces of

information which have been scaled upwards (bottom-up

approach) . The total effort is derived from the sum of all of

the smaller effort estimates. On the other hand, a macro

model is based upon a view of the big picture (top-down

approach). Effort is estimated for the entire product

development and then proportioned between the separate

development activities.

4

A. BASILI'S CLASSIFICATION SCHEME

One of the disadvantages in using the micro/macro scheme

for classifying models is that it is very limited in scope; it

only separates models into two large groups. A more detailed

scheme was developed by Victor Basili, who distinguished

models according to the type of formula they used to calculate

total effort [Ref. 2]. He defined models as being single-

variable if only onH basic variable wps used as a predictor of

effort and multi-variable if several were used. He further

defined models as being either static single-variable, static

multivariable, or dynamic multivariable.

1. Static Single-variable Model

In a static sing2e-variable model, a unique variable

such as SLOC (Source Lines of Code) is utilized in the derived

equations to make predictions about other variables such as

cost or time. The basic effort equation of this model takes

on the following form:

Effort = a*Sizeb

where a and b are estimated constants derived through linear

regression of a historical database. The Walston-Felix and

the basic COCOMO cost estimation models are examples of

single-variable models. A description of all cost estimation

models referred to in this chapter may be found in Chapter IV

5

with the exception of the COCOMO and Function Point models

which are described in Chapters V and VI respectively.

2. Static Multivariable Models

Cost estimating models, as defined by Basili, may also

be categorized as static multivariable. A model is considered

multivariable if it is based on several parameters and static

if a single effort value is calculated by the model formula.

The static multivariable models use the additional parameters

to make adjustments to the original estimation. These

adjustments are most often based on historical data. This

model is further subcategorized as being either an adjusted

baseline model, an adjusted table-driven model, or a multi-

parameter equation model.

a. Adjusted Baseline Model

The adjusted baseline model uses a single-variable

baseline equation which is adjusted in some way by a set of

other variables. The Intermediate COCOMO model fits this

category as its baseline effort estimate relies only upon

project size and it applies a set of adjustment multipliers to

its effort equation.

b. Adjusted Table-Driven Model

The adjusted table-driven model uses a baseline

estimate adjusted by a set of variables whose relationships

are defined in tables built from historical data. An example

of this is the Wolverton model. This model contains a basic

algorithm which involves categorizing the software routines.

6

c. Multi-parameter Model

In the multi-parameter model, a base formula is

used which contains several variables. The GRC model contains

several multiparameter equations containing more than one

variable.

3. Dynamic Multivariable Model

The final category defined by Basili is the dynamic

multivariable model. Unlike the static model, the dynamic

model does not have a single basic variable. Rather, it

contains a set of inter-dependent variables which respond to

changes over a period of time, such as staffing levels. The

Putnam model is a dynamic multivariable model that assumes a

specific distribution of effort over the life of a software

development project.

Figure 2.1 shows the model categories and their

relationships as described by Basili.

B. THIBODEAU'S CLASSIFICATION SCHEME

Another categorization scheme for cost estimation models

was developed by Robert Thibodeau. Thibodeau grouped models

into three separate categories based on the method the model

uses in making estimations. These include: regression,

heauristic, and phenomenological. [Ref. 4]

1. Regression Model

In the regression model, parameters are developed for

a single cost estimation equation by using linear regression

7

Model

Static Dynamic

Single Multivariable

Variable K

Z
Adjusted Adjusted

Baseline Table Driven

Figure 2.1 Model Relationships
[Ref. 3:p. 32]

on available data. This model is specific to the environment

in which it is developed. Examples of regression models

include the Doty, COCOMO, and GRC models.

2. Heuristic Model

Unlike the regression model, the heuristic model is

considered to be free from any singular mathematical

formulation. Heuristic models usually combine a number of

different estimating techniques. They provide a flexible

approach which utilizes observations of relations, interpreta-

tions, and a certain amount of subjectivity. They provide an

intuitive development of an estimate which takes advantage of

previous estimates and adjustment factors. Examples of

heuristic models include the Boeing, Price S, and Wolverton

models.

3. PhenomenoloQical Model

The third type of model described by Thibodeau is the

phenomenological model. This category was developed for and

is based on the SLIM model. It is unique in the fact that it

is the only model to use observed basic relationships which

are unrelated to the software development process. These

relationships are more representative of scientific law rather

than adaptive interrelationships which are used in heuristic

models.

C. SUMMARY

From all of the previous category listings it is evident

that there are many methods for classifying cost estimation

models. These methods are often useful when analyzing

different cost estimation models. However, regardless of the

classification of the model, almost all of the cost estimation

models underestimate their values. Additionally, if the model

is not properly calibrated to the user's environment, this

estimation error may be as great as 500 percent or more [Refs.

5-8]. With this in mind, it is the intent of this thesis to

develop an integrated automated model (ICEM) which utilizes

two of the best models currently available. The ICEM model

will combine the benefits of a parametric model (COCOMO) with

9

the advantages of a heuristic model (Function Point) in order

to provide a better cost estimating tool. By using models

based on different classification schemes, the user will

better be able to validate estimations. Additionally, this

model will provide the user with two alternative methods for

making cost estimations. This allows the user the ability to

select the model most appropriate for the given situation.

Since the ICEM model will be calibrated to the unique

environment of Decision Support Systems, it is only

recommended for this environment.

10

III. SIZE METRICS

Almost all of the cost estimation models currently

available use some form of size measurement or size metric for

making productivity and effort estimates. Likewise, most of

the error in estimating cost of software development is

attributed to error in estimating the size of the program. An

accurate and consistent method for obtaining size measurements

is essential to the success of most cost estimation models.

As DeMarco [Ref. 9:p. 3] states in reference to metrics, "You

can't control what you can't measure." This is also true for

estimation, you can't estimate without proper input

measurements.

A. SOURCE LINES OF CODE

One of the most common methods for measuring the size of

a project is by measuring the number of source lines of code

(SLOC) which it contains. It would seem that measuring the

number of lines of code would be an easy and accurate process

for providing a consistent size measurement; however, in order

to do this one must first determine what constitutes a line of

code. This can vary depending on the desired output. For

instance, when trying to determine the functional size of a

program it is generally accepted that only executable

statements are counted as lines of code; therefore, comments,

11

blank lines, and data are not considered. But, if determining

the total amount of effort is the desired result then all

factors should be included in the measurement.

Furthermore, there still remains a problem that the effort

required for writing a line of executable code may be easy or

difficult depending on the task. Therefore the size of a

program measured in SLOC does not provide a standard basis for

determining the effort involved. For example, a 100-line

program could take as little as a day to develop or as much as

a week depending on the complexity of the program task.

Another problem with using SLOC measurements is that

programs are written in many different languages, such as

Pascal, ADA, Fortran, Cobol, and Assembly language. The

amount of code required to perform a task in one language does

not necessarily equate to the number of lines that another

programming language would require to perform the same task.

Additionally, SLOC unfairly penalizes fourth generation

languages for their additional complexity. This point is

demonstrated in the empirical analysis of Chapter VIII. Since

most DSS are developed using fourth generation languages this

is very disadvantageous.

B. FUNCTION COUNTS

In order to overcome the problems associated with SLOC,

there have been many other methods introduced for measuring

program size. Function counts is one such method which

12

concentrates on measuring the amount of functions in a

program. Conte et al. [Ref. 10:p. 43] defined a function:

...as a collection of executable statements that performs a
certain task, together with declarations of the formal
parameters and local variables manipulated by those
statements.

The advantage in using the number of functions as a size

metric is that essentially, the number of functions will

remain the same regardless of the language the program is

written in. Additionally, during early life cycle development

when the code has not yet been developed, it is often easier

to estimate the number of functions that will be required than

to estimate the SLOC. The down side to this method is that

there is considerable overhead and cost in counting the number

of functions. This overhead discourages the definition of a

small function. Theoretically, a function could be as small

as a single statement or as large as an entire procedure

depending on how it is defined. This could lead to

consistency problems and as programs are separated into larger

functions the benefits of this method are lost.

C. HALSTEAD'S SOFTWARE SCIENCE

As previously discussed, one of the major problems with

SLOC is consistency, since some lines of code are more

difficult to code than others. One solution to this problem

is to give more weight to lines that are more complex.

Maurice Halstead developed such a scheme in his metric called

13

Software Science [Ref. 11]. Halstead's method uses

measurements of operators and operands.

Operators are primarily symbols or keywords that specify

an action. They consist of arithmetic symbols (such as +, -,

and /), command names (such as IF, IF..THEN..ELSE, or

DO..WHILE), special symbols (such as :=, braces, and

semicolons), and finally grouping functions (such as

BEGIN..END). Since BEGIN..END performs the same function it

is considered one operator. Operands are the symbols used to

represent data. They consist of variables, constants, and

labels.

Software Science uses measurements of operators and

operands to make predictions about a program's length, volume,

difficulty, level, and effort required. The length of a

program is calculated as a dimensionless quantity but can be

converted to SLOC by dividing by a constant which is language-

dependent [Ref. 10:p.41]. The volume of a program is also a

size measurement, but it is in terms of the minimum number of

bits required for programming. Volume is dependent upon a

measurement that is referred to as a program's vocabulary.

The basic metrics of Software Science are defined as:

n, = number of distinct operators in a program

n2 = number of distinct operands in a program

N, = number of occurrences of operators in a program

N2 = number of occurrences of operands in a program

14

Estimations are accomplished by using the following

equations:

N = Observed Program Length = N1 + N 2

N = Estimated Program Length = n1 (log2 (n,))+ n2 (log2 (n2))

n = Program Vocabulary = n, + n2

V = Program Volume = N(log 2 (n))

D = Program Difficulty = (n,/2)/(N 2 /n.)

L = Program Level = 1/D

E = Effort = V/1

It has not been sufficiently proven that the metrics

proposed by Halstead are actually any better at estimating

size than SLOC and there have been many people who have

questioned its effectiveness [P fs. 10; 12-15]. In view of

this, and with the increased cost and overhead associated with

the Halstead and other metrics, SLOC has continued to be the

dominant size metric. Additional information regarding the

Halstead and many other software metrics and models may be

found in a comprehensive collection of related articles by

Victor Basili [Ref. 16].

D. FUNCTION POINTS

Probably one of the more successful and rapidly growing

methods for measuring size has been Albrecht's Function Point

Analysis method [Refs. 17; 18]. The function point metric was

also developed as an alternative to LOC as the principle

sizing metric. Function Point metrics do not measure LOC,

15

rather, they focus on program functionality. This is not to

be confused with the function count method previously

discussed. Function Point Analysis is not simply a

measurement of the number of functions. Rather, it measures

five specific areas which include: inputs, outputs,

interfaces, files and inquiries. A complexity factor is used

to adjust the numeric values of each of the five areas. These

values are then summed to obtain a function point count which

can be used as a dimensionless sizing metric or further

equated to a SLOC measurement.

Most of the cost estimation models that have been

developed are unable to make accurate estimates early in the

development phase of a project. This is because most of the

models rely on SLOC as the primary size metric and estimating

SLOC early in the life cycle is very difficult and highly

inaccurate. Boehm [Ref. 19:p. 311] illustrated the difficulty

cost models have in making accurate estimates early in the

life cycle of a project. This is shown in Figure 3.1.

The method of calculating function points is described in

detail in Chapter VI. One of the advantages of using function

points is that they can be computed early in the development

cycle, essentially after the requirements and functional

specifications are written. Additionally, by concentrating on

program functionality the problems associated with using

different languages disappear. However, some researchers also

point out some non-negligible problems associated with this

16

Clase o ee ExamtW46 Sources of uflcertv,
-- d~~k surce to UPP~t hman-miacriine iniefface sohvira'r

41ar tyes dat lods AP

Z x / ~ t a ~ I d L C ~ ~ i~ fl a E'8 6 0 0m
1.5.xel irgiamne -terminaltafld"'gsPe.'a

loads

repos tie

0. &il

O~etatC~ tpE~itCaI~ons Defgtiled s ~chau i lcth'.'tS , O t

Product 06131!ee
drA dmiiA Ape

FstibH y Plans~ and Pra t Daea fo Deveiocmert atnd test
requ'rements des~lri lem

Phiases anio mnilsto'es

Figure 3.1 Software Cost Estimation Accuracy
Versus Phase [Ref. 19:p. 311]

method. First, the counting of the function points is prone

to subjective assessment. Second, it is difficult to collect

measurements on a specific information domain after-the-fact.

Finally, since the function point calculation is a

dimensionless quantity, it might convey little meaning. [Ref.

20:p. 94]

E. OTHER PRODUCT ATTRIBUTES

Although size estimates are very important in developing

a cost estimation model there are several other major

17

attributes which are also utilized. Boehm [Ref. 21:p. 11]

identified five major attributes used in cost estimation and

the factors that measure them. Figure 3.2 displays these

attributes and factors in relation to their use by the various

models described in Chapter IV.

UKDC TRWILrA PI CAA got ING. 0"C'

GROUP FACTOR 19% 97l2 SLIM DOTY PfiCi S 10M 1077 1071 OwauO SOfC- OSN JENSEN

.71 SOU IIC S C'IO7,* X x 7 X X X X X

ATMISLI7ES OGACT 77NSTRLPCTIO44S 7 7 7 X

NLIMg0 "Of ROUTINES x X 7

NUMER OF DATA ITEMS X X

NUM1ER 0f OUTP7UT FOR4ATS X x

OCUME NTA TIO tlx• X X

WjM0RO
F

PERSONNEL X I x 7 X

FROG A A M 1 7 7 X I X X X X

ATTRIUV1"S CWILXITY X x x X X X X

LANGUAGE X x X X x 7
ALIUSE x X x x X

0704U04 0 RLIA0ILITY X x X X
DISPLA Y MEl OIRE! ME NT S x X X

COW" in0 TIME O74SIRAINT x x X X X
AT"TANtJ-TIS STORAGE CONSTRAINT x x7 I X X

HARDWARE COFIGURATION x x

GONCURR(7 NOARI0 E
DE VELOPMET q •x X x x • X X

WIETEfACING CIOUIMEWT SX X

PERSONNEL PERSONNE t APA 77I 7. X X 7 X x X

ATIRIBUTIS PERSONNEL N TINUITY X •

HAIDWARIFE EXPERIENCE x 7 X X X

APPLICArIS EXPIERNCE X X X 7 7

LAWUAG1 EXPIRIENC X x X X X X

PROA C': TOOLS AN TI 4NtOCf S X I • • X X X

ATR'ISTIS CSTOMER iNERO ACE X •X X

R70UIREMINTS DEFINITION. I X

PF0OU0 IRMINIS VOLTILI 1TY 7 7 X x X x"
SCHDULE. X X X 11

ME CURIY • x X
C044lA~ ACCESS X X X X X X X X

T R A Y F tl IR C H W I N , W L T SI T E X • X X 11

SUPPORT SIrTWARE MAT'J"ITY X

CALIORAT 7077
FACTfOR I t X

1FORt "M7ANOM "CaS 1. X 7.t 7. 0.07 1.0 OS-12 70 7.2
EQUAT ION__

9CIOLLf t W t - CLA m 022-3s .u

Figure 3.2 Factors Used in Various Cost Models

13

IV. EXISTING COST ESTIMATION MODELS

A. BACKGROUND

The following is a brief introduction of several models

that have been developed for software cost estimation. In

presenting these models it is important to note that the

majority of the models have been developed based on a

particular set of data and environmental factors. Therefore,

most of the models are not transportable unless they provide

,A method for recalibration. Furthermore, a iaajority of the

models require complex mathematical calculations that are very

cumbersome for the user to apply to their own situations.

There are a few models, however, that have been automated

and are commercially available. These include the SLIM, PRICE

S, ESTIMACS and SOFTCOST models. Bailey et al. [Ref. 22]

provides a detailed evaluation of many of the automated

software cost-estimation models currently available.

Further detailed explanation of each model may be found in

the original source reference listed for each model. An

overview of a majority of the models is also provided by Boehm

[Ref. 19:pp. 510-520], Londeix [Ref. 3:pp. 36-411 and

Thibodeau [Ref. 4]. The COCOMO and Function Point models are

described in detail in Chapters V and VI respectively and are

not covered in this section.

19

B. COST ESTIMATION MODELS

1. SDC Model

The SDC model was developed from a study completed by

the System Development Corporation (SDC) for the U.S. Air

Force in the mid-1960's [Ref. 23]. This study included an

extensive analysis of 104 attributes of 169 software projects.

The SDC model proved to be highly inaccurate as a cost

estimator. It raised serious doubts about the ability of a

linear cost estimation model to estimate cost. However, it

did provide valuable information and spurred new research into

the area of cost estimation.

2. TRW Wolverton Model

The TRW Wolverton model is a matrix-based model which

was developed for use at TRW [Ref. 24]. In the model,

estimates of routine size are converted to costs using cost

per instruction values that are functions of the routine type

and complexity. A matrix of ratios is used to allocate the

total cost to seven phases with each phase divided into up to

25 activities.

The essence of the model can be seen in Figure 4.1,

which is an example using the 6 categories of the model. The

chart demonstrates how the cost per object instruction is

related to the relative degree of difficulty. Relative degree

of difficulty is determined by whether a routine is considered

old or new and whether it is classified as easy, medium or

hard.

20

80

Categories
C - Control
1 -Input/output T (all)

7 -P - Pre/post processor Ctgr
A7 Agoithm aegw
D - Data managerr'ent
T -Tim~e critical processor(D

Sampia, range
60- exwclue upper and lower

20 percentiles
I______________ I C),

.0 40-
0

0(D

3C- New ()L

(PI1 0

11Easy Mesiiur Haro

0 20 40 60 8C 10C

Relative degree of ditficulty percent of tota,
sample exrperienicinag this rate of less

Figure 4.1 TRW Wolverton Model: Cost
Per Object Instruction Vs.
Relative Degree of Difficulty
[Ref. 19:p. 513]

By multiplying the cost per instruction for each

routine by its number of object instructions and summing the

products for all of the routines, an estimated value for total

development cost may be obtained. This cost is then allocated

to each of the seven phases of development and their

attributes as defined by the model.

21

It is important to note that the ratios developed in

the TRW Wolverton model are only applicable for the TRW

database. Therefore, new ratios and a new matrix would have

to be developed if a different environment was to be used.

3. Putnam (SLIM) Model

The Software Life Cycle Model (SLIM) is a commercially

available costing model developed by Quantitative Software

Management, Inc. [Refs. 25; 263. It is primarily based on the

estimating model developed by Larry Putnam in the late 1970s.

The SLIM model depends on a SLOC estimate for the project's

general size. It also uses formulas which relate software

size to cost and schedule requirements. Therefore it is not

exactly a pure form of the phenomenological model as described

by Thibodeau [Ref. 4]. However, a major portion of the model

is dependent upon relationships which follow the scientific

Rayleigh distribution curve. In particular, the model relates

the software life cycle to the Rayleigh curve.

A majority of the articles regarding the Putnam model

and how it incorporates the Rayleigh distribuiion curve may be

found in [Ref. 27]. Weiner-Ehrlich et al. [Ref. 28] provides

an additional source of information regarding the use of the

Rayleigh curve for software modeling.

The Slim model uses the following equation in

developing its estimation model:

22

Ss = Ck K
1 3 X td'y3

where:

Ss = source statements (code size in SLOC)

Ck = technology constant (dimensionless usually 10040)

K life cycle effort in man-years

td = development time in years.

The SLIM model combines the estimation equation with

Monte Carlo simulation, standard deviation analysis, and

Rayleigh/Norden distribution curve analysis to provide a

unique estimate of effort and development time. One of the

bazic assumptions of this model is that manpower utilization

during program development follows the Rayleigh curve.

Therefore, manpower and cash flow rate may be obtained at any

point in the life cycle.

SLIM provides two methods for properly calibrating the

model: the user can calibrate the model by either inputting

data from completed projects, or by answering a series of 22

questions from which Slim will provide recommended calibration

entries.

4. Doty Model

In 1977, Doty Associates Inc., produced a software

cost estimation study of the software developed for the RADC

(Rome Air Development Center) [Ref. 29]. The objective of the

study was to reduce the variance between the estimated and

23

actual cost of software development. The study resulted in

the development of the Doty model.

The model is actually a set of individual models.

Each one to be used for a given type of software environment.

Equations have been developed empirically using regression

analysis for four application areas which include: command

and control, scientific, business and utility. These

equations use size inputs to estimate the number of man-months

of effort required for the program as defined by its category

type. A general set of equations is also available for

programs which do not fit into any of the four predefined

categories. The model also uses a series of 14 effort

multipliers in order to better refine the cost estimate to the

development environment. The model is considered a static,

multivariable model.

5. RCA PRICE S Model

The PRICE S model is an automated proprietary cost-

estimation model developed and maintained by PRICE Systems

Division of RCA, New Jersey [Ref. 30]. It is currently

available through an On-line system which can be reached by

modem over a standard telephone line. The model was primarily

designed for aerospace applications. It is considered a macro

estimation model as it uses a top-down approach throughout its

estimation development.

PRICE S uses inputs of size, type and difficulty and

a series of hypothesized relationships in order to make

24

estimates of project cost and schedule. Most inputs are

heuristic in nature as they are based on certain subjective

opinions of the user, such as:

- the cost required to produce programs,

- the effect on cost of changing development time,

- the comparative costs of the development cycle
elements.

Since every project is different and will take in

different inputs, the model does not have a standardized set

of equations with predetermined coefficient values for

calculating effort.

6. Walston and Felix IBM-FSD Model

This model was developed by Walston and Felix at IBM

Federal Systems Division in an attempt to measure the rate of

production of lines of code by project as influenced by a

number of product conditions and requirements [Ref. 31]. The

model is derived from a database of 60 different projects.

One of the goals of Walston and Felix was to develop an effort

estimation model based on size alone. Based on their

collected data they found 29 factors which were significantly

correlated with productivity. They incorporated these factors

into a single formula which enabled them to calculate a

productivity index. Using this productivity index and linear

regression (for calibrating their model to the environment),

they developed an equation for estimating productivity of new

projects.

25

7. Boeing Model

The Boeing model was developed by Boeing Computer

Services in 1977 [Ref. 32]. The model is considered to work

best for aerospace types of systems for which it estimates

total project effort. In estimating effort the model uses a

set of productivity rates applied to the following types of

software used in the model:

- Mathematical Operations,

- Report Generation,

- Logic Operations.,

- Signal Processing or Data reduction,

- Real Time.

The Boeing model also uses estimates on the total

number of delivered instructions for developing its effort

estimation of nominal man-months. Like many other models, it

uses predetermined percentages to divide the total estimated

effort into individual effort estimates for the various life

cycle phases. Finally, the model applies effort multipliers

to the nominal effort estimates for each phase to produce an

adjusted effort estimate for each phase.

8. GRC Model

The General Research Corporation (GRC) model was

developed in 1974 [Ref. 33]. The model is a static, sinqle-

variable model which estimates cost in a non-linear fashion.

The model uses a large number of different estimating

techniques including regression analysis. The model has a

26

number of good features which include a thorough definition of

the quantities being estimated and a set of relationships for

estimating such quantities as training and installation costs.

However, it does have a few problem areas the least of which

includes using the "number of output formats" as the basic

size parameter [Ref. 19:p. 519].

9. Other Models

In addition to the previously listed models there have

been many other software cost estimation models recently

developed, some of these include the Bailey-Basili Meta-Model

[Ref. 34], Grumman SOFCOST model [Ref. 35], Tausworthe Deep

Space Network (DSN) model and subsequent SOFTCOST model [Ref.

36], Jensen model [Refs. 37; 38], Estimacs model [Refs. 39;

40], SPQR/20 model [Ref. 41], Before You Leap (BYL) model

[Ref. 42], and the BIS/Estimator model [Ref. 43].

Most of these models have been automated and use

either SLOC or function points as their primary input size

metric. Since the automated models are continually under

revision, the software vender should be contacted for the

latest information regarding the model.

C. SUMMARY

Although there are many models currently available for

estimating software cost, a model has yet to be developed

which can estimate software cost with a high degree of

accuracy. Furthermore, none of the discussed estimation

27

models appear to be conducive to DSS software. Nevertheless,

the COCOMO [Ref. 19] and Function Point [Refs. 17; 18] models

have proved to be key models in leading the research for the

development of better cost estimation models. Therefore, they

lend themselves as the best candidates to be tailored to the

DSS environment. These two models will be presented in the

following two chapters.

28

V. COCOMO MODEL

A. OVERVIEW

The COCOMO model which stands for COnstructive COst MOdel

was developed by Barry Boehm and is covered in great detail in

[Ref. 19]. Based on his analysis of 63 software development

projects, Boehm developed a model that relates SLOC inputs to

effort. The COCOMO model consists of three separate forms of

the model: Basic, Intermediate, and Detailed. Each model is

further broken down into three modes of software development:

organic, semidetached and embedded. These modes are used to

identify the development environment and general characteris-

tics of a software project such as size and complexity.

The ICEM model, presented in Chapter VII, will automate

the functions of the Basic and Intermediate models. Since the

Detailed model will not be implemented in ICEM it is not

discussed in this chapter.

B. BASIC MODEL

The Basic COCOMO model is used to make quick, early, rough

order of magnitude estimates of small-to-medium-sized software

projects. The Basic model uses an estimated number of

thousands of delivered source instructions (KDSI), and the

development mode to estimate the development time and cost of

a software development project.

29

Source instructions are defined as executable lines of

code which include variable declarations, format statements

and job control language but not comment statements [Ref.

19:p. 59]. All COCOMO models rely on fairly accurate

estimates of KDSI in order to make accurate estimates.

As previously mentioned, the development mode of a project

is determined by its characteristics such as size, complexity,

and design environment. A summarized list of Boehm's criteria

[Ref. 19:pp. 78-82] for the different modes follows:

- ORGANIC MODE

* Generally stable development environment,

* Minimal need for innovation in architectures of
algorithms,

* Relatively low premium on early completion of the
project,

* Relatively small size, usually not greater
than 50 KDSI,

* Small experienced software development teams used,

* Loose coupling with external systems.

- SEMIDETACHED MODE

* Mixture of organic and embedded characteristics,

* Intermediate level of experience with related
systems,

* Wide mix of experienced and inexperienced people,

* Some experience with aspects of system under
development,

* Software project range usually not greater
than 300 KDSI.

30

- EMBEDDED MODE

* Software development within tight constraints such
as time and cost,

* Integral part of some larger system, heavily
embedded and strongly coupled to it,

* Numerous interface requirements,

* High required reliability,

* Requires much innovation.

The Basic COCOMO effort estimating equations as

separated by mode are as follows:

Organic Mode MM = 2.4(KDSI)'-5

Semidetached Mode MM = 3.0(KDSI) 1 12

Embedded Mode MM = 3.2(KDSI) 1 2

where:

Mm = man-months of development effort

KDSI = thousands of delivered source instructions.

These equations are used primarily to obtain an estimated

number of man-months required for project development. Labor

cost is not directly calculated due to price variances among

organizations. However, labor cost may easily be obtained by

multiplying the man-month values by an appropriate average

man-month salary. It is recommended that the average man-

month salaries be calculated separately for each major phase.

31

If desired an hourly rate can be determined by setting a man-

month equal to 150 man-hours per month. [Ref. 19:p. 59]

The development period covered by COCOMO, for which the

above equations apply, begins at the beginning of the product

design phase and ends at the end of the integration and test

phase. The COCOMO model provides a method for dividing total

cost among these phases and additionally provides equations

for estimating annual software maintenance cost. These issues

are covered in detail in [Ref. 19] and will not be discussed

further.

In addition to providing man-monCh estimates the Basic

COCOMO model also provides Development Time or (TDEV)

estimates. TDEV represents the number of months required for

project completion. It is often referred to as development

schedule and is calculated from the following formulas:

Organic Mode TDEV = 2.5(MM)° >

Semidetached Mode TDEV = 2.5(MM)0 3-

Embedded Mode TDEV = 2.5(MM). 32

where:

TDEV = development time in months

MM = man-months as previously calculated.

32

C. INTERMEDIATE COCOMO

One of the drawbacks in using the Basic model is that it

is limited in accuracy because it does not take into account

many factors which can effect software cost. Some of these

factors include differences in hardware constraints, personnel

quality and experience, and use of modern tools and

techniques. The Intermediate COCOMO model was developed to

incorporate these and other project attributes which are known

to have a significant influence on software cost. The intent

of adding these factors is to improve the accuracy of the

model. The Intermediate model uses 15 cost drivers to make

these adjustments. These cost drivers are grouped into four

categories:

- Product attributes

* RELY--required software reliability,

* DATA--data base size,

* CPLX--product complexity.

- Computer attributes

* TIME--execution time :onstraint,

* STOR--main storage constraint,

* VIRT--virtual machine volatility,

* TURN--computer turnaround time.

- Personnel attributes

* ACAP--analyst capability,

* AEXP--applications experience,

* PCAP--programmer capabi'ity,

33

* VEXP--virtual machine experience,

* LEXP--programming language experience.

- Project attributes

* MODP--modern programming practices,

* TOOL--use of software tools,

* SCED--required development schedule.

Each cost driver is ranked on a scale indicating its

importance to a particular product. Figure 5.1 displays the

ranking scale and their corresponding values with respect to

the various cost drivers. Boehm [Ref. 19:pp. 119-122]

explains how to properly rank each cost driver.

Once all of the values for the cost drivers are obtained

they are multiplied together to obtain a single product called

the Effort Adjustment Factor (EAF). This factor is then

applied to the effort equation to obtain an adjusted man-month

calculation.

The development modes for the Intermediate model are the

same as those for the Basic model. However, the effort

equations vary slightly from the Basic model and are as

follows:

Organic Mode MMn = 3.2(KDSI)' °5

Semidetached Mode MMn = 3.0(KDSI) 1 12

Embedded Mode MMn = 2.8(KDSI)'-2 °

where:

34

Very Very Extra
Cosi Drivers Low Low Nominal High High High

Product Attributes
RELY Required software reliability .75 .88 1.00 115 1.40

DATA Data base size .94 1.00 1.08 1.16
CPLX Product comipleity .70 .85 1.00 1.15 1.30 1.65

Computer Attributes
TIME Execution time constraint 1.00 1.11 t.30 1.66

STOR Main storage constraint 1.00 1.06 1.21 1 54
VIRT Virtual machine volatility- .87 1.00 1.15 1.30

TURN Computer turnaround time .87 1.00 1.07 1.15

Personnel Attributes
ACAP Analyst capability 1.46 1.19 1.00 .86 .71
AEXP Applications experience 1.29 t.13 1.00 .91 .82

PCAP Programmer capability 1 .42 1.17 1.00 .86 .70
VEXP Virtual machine exprience* 1 21 1.10 1.00 .90
LEXP Pirogramming language experience 1.14 1.0C7 1.00 .95

Project Attributes
MODP Use ofmodem programnung Pract"ce 1.24 1.10 1.00 .91 .82

TOOL Use of sciltwere toots 1.24 lAO0 1.00 .91 .83
SCED Required development schedule 1.23 1.08 1.00 1.04 1.10

-For a given software product, the isidetyfg vitual nradsre Is the complex Of hardware and software (O5.
DBMS, etc) 1t calls on to accom'plish its taskrs

Figure 5.1 Software Development Effort Multipliers
(Ref. 19 :p. 1181

MMn =Nominal man-months of development effort.

The effect of the cost drivers is factored into the effort

equation by multiplying the nominal man-months by the EAF:

MMadj = Mx~n * EAF

where:

MMadj = man months adjusted.

35

The schedule formulas by mode are the same as for the

Basic model.

D. CALIBRATING THE COCOMO MODEL

The term calibration is used to mean that new coefficients

or multipliers for an existing model are established or

modified such that the same model structure applies to a

database or an individual system corresponding to an

environment other than the one upon which the model was

developed.

In general, the COCOMO model was developed for most

software cost estimations situations. However, by calibrating

the COCOMO model to the user's specific environment the

accuracy of the model can be greatly increased. Boehm [Ref.

19:pp. 524-528] provides two ways to calibrate the COCOMO

model. The easiest way is to first determine the most

appropriate development mode to be used. Then a least-squares

approximation technique is used to recalculate the constant

term (c) in the development mode's effort equation:

MM = c(KDSI)b(EAF)

The least-squares technique produces the following equation

which is used to calculate the new constant (c):

36

n

= =0
n

i-0

where:

MMi = actual man-months of effort

Qi= (KDSIi)b(EAF,)

b = scale factor for mode

n = number of projects in database.

The second method for recalibrating the COCOMO model uses

a similar least-squares method for calibrating both the

coefficient term (c) and the scale factor (b). These values

are recalibrated to the user's environment by using the

following equation:

logc= a2 d°-a 1 d
2

2aoa 2-al

where:

the quantities a0 , a,, a 2 , do and d, are calculated as:

37

a0 = n
n

al = E Iog(KDSI)1
i=0
n

a, = Y, [log (KDSI)] 2

1=0

n

ndo E og(MM/EF) 1 log(KDSi) 1

i0

As is apparent, neither of these methods provides a way to

recalibrate the cost driver rating values. Unfortunately, the

only method to recalibrate the cost drivers is through trial

and error and this is not recommended due to the multiplica-

tive nature of the EAF factor.

The ICEM model presented in Chapter VII uses this least-

squares method in order to recalibrate the model to the unique

environment of Decision Support Systems.

38

VI. FUNCTION POINT ANALYSIS MODEL

A. BACKGROUND

In 1979, Alan Albrecht of IBM developed the method of

Function Point Analysis [Ref. 17], to help measure the size of

a computerized business information system. He found that he

could not successfully use the SLOC method to determine size

measurements which were needed as an input component for

effort and productivity estimates. As an alternative to using

SLOC, he developed the Function Point Analysis method. He

further revised and refined his method in 1983 [Ref. 18].

As previously mentioned, there are very few cost

estimation models that can be applied relatively early in the

systems development life cycle. This is because they rely on

metrics that can only be applied in the post-code phase of

development such as SLOC. The function point metric is an

exception to this rule.

By being able to make estimates early in the development

process one can continue to refine the cost model throughout

life cycle development. Furthermore, early estimates can

improve scheduling and reduce cost. Another advantage of the

function point metric is that, unlike SLOC, it is unaffected

by the choice of programming languages used.

39

B. CALCULATING FUNCTION POINTS

In addition to Albrecht's articles, there have been

several noteworthy publications written which provide a step

by step method for calculating function points. Brian Dreger

[Ref. 44] provides a highly-detailed guideline for calculating

function points while Roger Pressmen [Ref. 20] provides an

easy to use table format. Figure 6.7 provides a similar

format to be used as a worksheet for making function point

calculations.

The method for calculating function points involves a four

step process:

- Count the unique number of occurrences of the five user
function types,

- Classify each function type according to its level of
complexity,

- Adjust for processing complexity,

- Make the function points calculation.

C. (STEPS 1 & 2) COUNT AND CLASSIFY FUNCTION TYPES

Five types of functions are counted as function points:

- Inputs.

- Outputs,

- Inquiries,

- Files,

- Interfaces.

Each of these functions are classified according to

three levels of complexity:

40

- Simple,

- Average,

- Complex.

These complexity factors are further associated with a

particular weighting factor which is used in (Step 3) to

adjust the values of the five individual function counts.

1. Measuring Inputs

In measuring inputs, each unique user data or control

input that is performed by the user within the application in

order to add, delete or update something should be counted.

An input is considered unique if it has a different format,

such as a different input screen, or it has the same format as

another input but uses different processing logic (same

entities are modified in a different way). Inputs should be

distinguished from inquiries, which are counted separately.

After the number of inputs are counted they are classified

according to their complexity.

a. Classifying Inputs

Classifying inputs for complexity depends on two

things: the number of files referenced or accessed (see

measuring files below) and the number of data items (fields or

specific variables) referenced. It is important to note that

only the data items actually updated by the input transaction

are counted. Data items which reside in the same file but are

not referenced are not counted. The complexity level and

associated weighting factor is selected by cross-referencing

41

the numbers of files referenced to the number of data items

referenced. Figure 6.1 is used to determine the complexity

level and the corresponding complexity weighting factor.

1-4 data items 5-15 16 or more
referenced data items

0 or 1 file(s) Simple (3) Simple (3) Average (4)
referenced

2 files Simple (3) Average (4) Complex (6)
referenced

3 or more Average (4) Complex (6) Complex (6)
files ref.

Figure 6.1 Classifying Inputs

From this chart it may be seen that ten data items

accessed from two files would be classified as "average" in

complexity and given a weighting factor of four.

2. MeasurinQ Outputs

In measuring outputs, each unique user data or control

output procedurally generated that leaves the application

boundary should be counted. This includes reports and

messages to the user, as well as outputs to other applica-

tions. Uniqueness has the same implications for outputs as it

does for inputs.

a. Classifying Outputs

Outputs are classified in a similar format as

inputs. However, the actual numerical values for the various

42

entries have been changed. Only the files and individual data

items accessed during output are counted. Figure 6.2 is used

to obtain the complexity level and corresponding weighting

factor for outputs.

1-5 data items 6-19 20 or more
referenced data items

0 or 1 file(s) Simple (4) Simple (4) Average (5)

referenced

2-3 files Simple (4) Average (5) Complex (7)

4 or more Average (5) Complex (7) Complex (7)
files ref.

Figure 6.2 Classifying Outputs

3. Measuring Inquiries

In measuring inquiries, each unique input/output

combination in which the on-line user-defined input causes and

generates an immediate on-line output by the application

should be counted. Inquiries may also be provided to other

applications. Many inquiries are simply requests for specific

data from a data base. An inquiry is considered unique if it

has a format different from others in either its input or

output portions or it has the same input and output format but

requires different processing logic in either.

43

a. Classifying Inquiries

Classifying inquiries consists of two parts:

classifying the inputs and classifying the outputs. The same

charts are used for inputs and outputs as before. The only

difference is that while a stand-alone input actually updates

the data store, an inquiry only directs the search and never

updates. Once the two complexity factors are obtained for

outputs and inputs the two are compared with the larger value

being selected as the weighting factor for the inquiry

function.

Figure 6.3 is used to obtain the respective

classification and weighting factor for the input part of the

inquiry function, while Figure 6.4 is used to obtain the

output factor. The larger value of the two is used as the

factor for the inquiry function.

Input part: 1-4 data items 5-15 16 or more
referenced data items

0 or 1 file(s) Simple (3) Simple (3) Average (4)
referenced

2 files Simple (3) Average (4) Complex (6)
referenced

3 or more Average (4) Complex (6) Complex (6)
files ref.

Figure 6.3 Classifying Inquiries (Input)

44

Output Part: 1-5 data items 6-19 20 or more
referenced data items

0 or 1 file(s) Simple (4) Simple (4) Average (5)

referenced

2-3 files Simple (4) Average (5) Complex (7)

4 or more Average (5) Complex (7) Complex (7)
files ref.

Figure 6.4 Classifying Inquiries (Output)

4. Measuring Files

Measuring the number of files is not as simple as

just counting the number of physical files in an application.

Rather, only files that contain data stored in logical

groupings within the application are counted as files. These

files perform data storage functions for the application.

Furthermore, files or data stores are to be considered in the

logical not physical sense. A physical file can actually

contain many logical files. Every unique data access, path or

view of a database is considered a collection of information

and is counted as a separate logical internal file. However,

temporary data stores are excluded from this count as only

permanent files are counted. Additionally, transactions that

trigger internal logical files to be updated or changed are

not considered files themselves.

It is crucial that the number of logical internal

files be properly counted. Typically, every logical file will

45

have at least one input, output, and inquiry. This

corresponds to at least 18 points when complexity adjustments

are added (seven file, three input, four output, and four

inquiry).

a. Classifying Files

Like the other classifications, classifying files

is a two-step process. First the number of data items

actually required by the application are counted and then

either the number of record forma~s within the file or the

number of logical relationships in which the file participates

are counted. It is important to recognize that only logical

relationships are used; therefore, the number of different

record types within a file are not simply counted but also

their logical relationships as well. Figure 6.5 is used to

determine the complexity level and weighting factor for files.

1-19 data 20-50 51 or more
items ref. data items

1 logical record Simple (7) Simple (7) Average (10)
format/relation-
ship

2-5 logical Sinple (7) Average (10) Complex (15)
reco.rd format/
relationships

6 or more Ave. (10) Complex (15) Complex (15)
logical record
format/relation-
ships

Figure 6.5 Classifying Files

46

5. Measuring Interfaces

IAiterfaces involve using data stored by another

application but used by the current application. In measuring

interfaces count every major logical file (as previously

defined) within the application boundary that is sent to,

shared with, or received from another application. Files

shared between applications are counted as both files and

interfaces within each application if they are used in both.

This includes data stores that are imported, exported or

shared between the two applications. Interface does not

involve transaction. An application must be able to access

the data directly without the aid of another application for

it to be counted as an interface.

a. Classifying Interfaces

The classification scheme used for interfaces is

similar to the one used for files. As Figure 6.6 demonstrates

the number of data items referenced (and actually used) and

the number of logical relationships in which the interface

file participates to meet application requirements are used to

obtain the complexity level and weighting factor.

47

1-19 data 20-50 51 or more
items ref. data items

1 logical record Simple (7) Simple (7) Average (10)
format/relationship

2-5 logical Simple (7) Average (10) Complex (15)
record format/
relationships

6 or more Ave. (10) Complex (15) Complex (15)
logical record
format/relationships

Figure 6.6 Classifying Interfaces

D. (STEP 3) ADJUST FOR PROCESSING COMPLEXITY

Adjusting for processing complexity is a simple task;

simply multiply the measured value for each function (count)

by its corresponding weighting factor. Figure 6.7 provides a

worksheet for developing function points and shows how the

weighting factor is incorporated into the process of

calculating the function point value.

48

F Weighting factor
Fucto Count

Simple Avg. Complex FP

Inputs 3 4 6

Outputs 4 5 7

Inquiries 3 4 6r 1

Files 7 10 15

Interfacesl 5 7 10

'Count X weighting factor = FP Sum of all FP =

Figure 6.7 Function Point Worksheet

E. (STEP 4) MAKE THE FUNCTION POINTS CALCULATION

To make the total adjusted function points calculation

(FP) the following equation is used:

FP = (Sum of FP counts) X (0.65 + (0.01 X SUM(Fi))]

where (Sum of FP counts) is the total sum of FP counts

obtained from above and the SUM(Fi) is the sum of 14

complexity adjustment values (where i = 1-14) obtained by

answering the questions in Figure 6.8 according to the ranking

scale provided.

49

Rate each factor on a scale of 0 to 5:

0 1 2 3 4 5

No
influence Incidental Moderate Average Significant Essential

Fi:

1. Does the system require reliable backup and recovery?

2. Are data communications required?

3. Are there distributed processing functions?

4. Is performance critical?

5. Will the system run in an existing, heavily utilized
operational environment?

6. Does the system require on-line data entry?

7. Does the on-line data entry require the input
transaction to be built over multiple screens or
operations?

8. Are the master files updated on-line?

9. Are the inputs, outputs, files, or inquiries complex?

10. Is the internal processing complex?

11. Is the code designed to be reusable?

12. Are conversion and installation included in the design?

13. Is the system designed for multiple installations in
different organizations?

14. Is the application designed to facilitate change and
ease of use by the user?

Figure 6.8 Complexity Adjustment Factors

50

F. SUMMARY

The four step method we have followed has only one goal in

mind, to calculate a single function point number. It is

important to note that this number is only a representation of

the size of the project. Like SLOC it is only used as a

sizing metric and therefore does not yield an effort

estimation directly. However, as demonstrated by Albrecht and

Gaffney in 1983 [Ref. 18], one can use simple linear

regression on a data set of projects to estimate man-months as

a function of the function points. This is the method used in

developing the ICEM model.

51

VII. INTELLIGENT COST ESTIMATION MODEL (ICEM)

A. INTRODUCTION

The ICEM model is an integrated automated package which

utilizes an expert system coupled with a spreadsheet to

perform cost estimation. The model was developed as an

initial prototype system. It is not intended to be an all-

inclusive model ready to be implemented within an organiza-

tion. Rather, it is used to analyze existing methodologies

and promote the development of integrated cost estimation

models which incorporate expert system technology.

One of the key factors in accurately estimating cost is

user experience. All too often this experience is lost when

personnel transfer. The ICEM model is considered intelligent

because it uses an expert system to collect and process

heuristic data. An expert system j used because it enables

an organization to capture the talent and experience of its

key personnel [Ref. 45:p. 332]. By using an expert system as

the foundation for the model we hope to promote the capturing

of this experience so it can be used in designing and

continually upgrading an effective cost estimation model.

Additionally, the expert system enables the quick

development of a very user-friendly system. The expert system

uses a simple question and answer format to collect data for

its parametric models. This eliminates the need for the user

52

to perform exhaustive searches through data tables to obtain

appropriate data values which must then be applied to

equations for manual calculations.

The main problem with almost all of the cost estimation

models discussed in Chapter IV is that they are poor

estimators. This point was emphasized by Boehm [Ref. 19:p.

32] who said:

Today, a software cost estimation model is doing well if
it can estimate software development cost within 20% of the
actual costs, 70% of the time, and on its own home turf
(that is, within the class of projects to which it is
calibrated).

Most of this low accuracy rate is due to undersizing.

But, even as weak as these cost estimation models may appear,

they still offer marked improvements over previously used

manual methods and if properly used can be very beneficial.

In an effort to improve the accuracy of the estimating

process the ICEM models incorporates the concepts developed by

the COCOMO and Function Point models into an integrated model.

These two models were selected based on their popularity and

success [Ref. 5]. Also these two models proved ideal because

they utilize two very dissimilar estimating methods and

incorporate two different size metrics (SLOC and Function

Points) for their primary input. For the purpose of consis-

tency checking it is important to have as much independence in

the estimating methods as possible.

The ICEM model is actually three models in one. The

COCOMO Intermediate model has been automated for all modes of

53

operation including organic, semidetached and embedded modes.

The second model specifically tailors the COCOMO organic mode

for the DSS environment. The organic mode was considered

because of the characteristics of the empirical database which

is used to calibrate the model. The third model includes a

parametric model which incorporates the Function Point size

metric.

In order for any cost estimation model to be useful in an

environment other than the one in which it was developed, it

must be calibrated to the new environment. One of the

requirements for tailoring a cost estimation model to a new

environment is to have a proper database. To ensure

statistical quality, a database of at least ten projects

unique to the new environment is recommended as a starting

point. The ICEM model is calibrated to the Decision Support

System (DSS) environment by using a database set of 13 DSS

projects.

B. OVERALL ARCHITECTURE OF ICEM

The architecture of the ICEM model is displayed in Figure

7.1. VP-Expert, developed by Paperback Software Internation-

al, provides the primary interface with the user. Although

several expert systems are currently on the marketplace today,

VP-Expert was selected based on its low cost, ease-of-use,

powerful expert system capabilities, and ability to be easily

54

coupled with spreadsheet (VP-Planner) and database (VP-INFO)

systems.

user
interface

I
VP-Expert user VP-Planner Plus

interface user interface
interence engine spreadsheet

ICEMi .WKS, - :.WKS

ICEM2.WKS

Figure 7.1 ICEM Architecture

1. VP-Expert

VP-Expert consists of three parts: a user interface,

a knowledge base, and an inference engine. The user

55

interface allows the user to communicate with the expert

system through the keyboard and screen display. In VP-Expert,

the knowledge base is stored in files that have the extension

".KBS." The knowledge base itself is composed of three

sections: actions block, rules block, and questions block.

The actions block of the knowledge base provides

directions to the expert system for finding a particular

solution to a problem. It controls the flow of the program.

On the other hand, the rules block contains the rules that

tell VP-Expert how to solve a specific problem. It consists

of three key words: RULE, IF, and THEN. The questions block

provides questions to ask the user if VP-Expert needs more

information.

Finally, the inference engine contained in VP-Expert

provides decision-making intelligence. The inference engine

uses the rules in the rule base in order to make decisions on

how to solve a problem. Typically, an expert system's

inference engine can use two methods for processing the rule

base, either forward chaining or backward chaining. The ICEM

model was developed to employ a backward chaining strategy for

problem solving.

The ICEM model incorporates two knowledge bases,

ICEM1.KBS and ICEM2.KBS, which have been chained together.

One of the main problems with using a rule-based expert system

is that depending on the size of the rule base the system

could require a considerable amount of memory usage. In order

56

to get around this memory barrier VP-Expert allows two rule

bases to be chained together.

In VP-Expert, when a knowledge base is chained to a

second knowledge base, variable values are first stored in a

temporary file using the "SAVEFACTS" command. The second

knowledge base (with its new rule base) then replaces the

first rule base in memory. Finally, it recovers the stored

variable values using the "LOADFACTS" command. This method

saves considerable memory by swapping knowledge bases and

their accompanying rule bases.

One minor inconvenience of using the "SAVEFACTS"

command is that it will save the value of every variable used

by any portion of the expert system resulting in irrelevant

data passing from one knowledge base to another. In order to

eliminate unnecessary data passing all variable values can be

cleared from memory using the "RESET ALL" command and then

pertinent variables can be assigned specific values before

using the "SAVEFACTS" command. By using the "RESET ALL"

command and chaining its two knowledge base files (ICEM1.KBS

and ICEM2.KBS) together, the ICEM model is able to save

considerable memory thus enabling it to operate within the

boundaries of conventional memory. Further information about

VP-Expert and its command language may be found in [Ref. 46].

2. VP-Planner Plus

As shown in Figure 7.1, VP-Expert is coupled to VP-

Planner Plus. VP-Planner Plus is a spreadsheet program also

57

developed by Paperback Software International. It is used to

provide automated statistical calculations and display effort

and schedule information in a format easily understood by the

user. It is fully automated and allows instantaneous

sensitivity analysis to be performed by the user. All

variable values are passed from VP-Expert to VP-Planner using

the "PWKS" command. Although this command works relatively

well, it has a tendency to be time-consuming. It takes

approximately 20-30 seconds to save values to the spreadsheet

using an IBM compatible 386 while a 286 machine may take one

to two minutes for processing.

Although there are many advantages to linking VP-

Expert to VP-Planner there is also one additional disadvan-

tage. When the two programs are linked together they are

essentially running simultaneously. Therefore, almost twice

the amount of memory is required than if only one of the

programs was running at a time. This posed a significant

challenge in trying to keep the memory usage under 600k.

Unfortunately, there is no way around this problem. VP-Expert

does not offer a method to call a specific spreadsheet using

VP-Planner unless VP-Expert is running in the background.

All user data are saved in spreadsheet files that end

with the ".WKS" extension. Further information about VP-

Planner Plus and its related commands may be found in [Ref.

47].

58

VIII. USING ICEM FOR EFFORT ESTIMATION OF DSS SOFTWARE

A. INTRODUCTION

The purpose of this chapter is to use ICEM as a DSS in

order to estimate the amount of effort required to develop PC-

based DSS. As discussed earlier, ICEM combines the COCOMO

model and the Function Point models. But before these models

can be incorporated into ICEM, it is first necessary to

recalibrate their estimated coefficients to take into

consideration environmental factors related to DSS.

As can be seen later in this chapter, recalibration is

particularly necessary, especially when you consider that the

original coefficients developed by Boehm for the COCOMO model

were derived from large-scale projects using second generation

programming language (2GL) that were developed two decades

ago. On the other hand, the majority of DSS are developed by

small programming groups using either third or fourth

generation programming languages (4GL).

Although ICEM was designed to incorporate both the COCOMO

and function points methodologies, only the COCOMO model has

been calibrated due to the unavailability of empirical data.

B. THE DSS DATABASE

The DSS database, which the ICEM model uses for calibra-

tion, comprises 13 DSS projects which were built at the Naval

59

Postgraduate School (for more information regarding these

projects, contact the thesis's advisor). All of these DSS

were developed under the conditions described by the COCOMO

organic mode (see definition, Chapter V, Section D). Table

8.1 reproduces the data points for the various DSS projects.

A brief description of each of the 13 DSS project follows.

TABLE 8.1

DSS DATA POINTS

Project Language KDSI EAF Mact #dev

CO-OP Turbo Pascal 16.0 0.94 15.0 1
INTEG Basic 3.0 1.15 7.0 2
CEA Turbo Pascal 9.0 0.90 7.0 1
TAO Exsys 4.0 0.85 6.0 1
CEASAR Exsys 5.0 0.98 5.0 1
NURSE Turbo Pascal 5.0 1.26 9.5 1
ASDB dBase III 6.0 1.00 6.5
COCOMO Knowledgeman 3.0 1.30 7.5
NAVAIR dBase III 2.5 0.90 6.5 3
CAI dBase III 2.5 1.50 8.0 2
STOCKPT VP-Expert 6.0 1.00 4.0 1
DIST.ES VP-Expert 6.5 1.10 3.0 1
TOUCHSTONE Turbo Pascal 9.5 1.00 8.0 2

1. Co-Op

Co-Op is a group DSS for multiple-criteria decision

making. Co-Op contains a set of techniques of aggregation of

preferences and consensus seekiig algorithms that can be used

in conjunction with individual multiple criteria decision

models.

60

2. INTEG

INTEG is a Software package to assist in the

instruction of an introductory graduate level course in

probability and statistics. INTEG is designed to increase

student productivity during time spent on learning various

problem- solving techniques.

3. CEA

CEA is a DSS for cost-effectiveness analysis for

control and security of computer systems. CEA is geared to

help the EDP manager: (i) identify alternative sets of

control activities, (ii) evaluate and choose the most

preferred set, and (ii4 monitor and upgrade the security of

EDP system frequently.

4. TAO

TAO is a rule-based system to help Tactical Action

Officers (TAO) to assess the threats of enemy's weapon systems

and to determine appropriate c'o " measures during a naval

engagement.

5. CEASAR

CEASAR is an expert system computerize the manual

assignment selection system for Army commissioned officers at

the Military PerLonnel Center (MILPERCEN). The system is

designed to minimize adversary relationships that often exist

between officers in the field and their assignment specialists

from the U.S. Army Military Personnel Center.

61

6. NURSE

NURSE is an expert system to automate the Nursing

Diagnosis, Nursing Care Plan and Patient Classification Level.

NURSE passes this information to another program to determine

nursing staffing.

7. ASDB

ASDB is a DSS to support the management and

accountability of the property of an academic department.

ASDB is an intelligent DBMS that provides customized reports

including custodian listings, quarterly reports, and property

reports.

8. COCOMO

COCOMO is a DSS to perform sensitivity analysis of the

COCOMO models including phase distribution calculation for

development or maintenance, activity distribution by phase for

development, and report generation.

9. Navair

Navair is an automated evaluation tool to estimate

Aircraft System Test and Evaluation (AST&E) efforts. A

relational DBMS is coupled with a statistical software package

to estimate AST&E cost drivers and physical/performance

characteristics.

10. CAI

CAI is an intelligent computer-aided instruction

software system based on the Baysesian Probabalistic Model.

62

The system is able to function beyond the usual stand-alone

mode through interfacing with an external DBMS.

11. Stock Point Expert System

The Stock Point Expert System is an expert system for

causative research in inventory management. Four technical

areas of causative research are implemented using four

separate knowledge bases. The Stock Point Expert System seeks

to improve productivity and assists with training in the

causative research area of inventory management.

12. Distributed Expert System

The Distributed Expert System is a distributed expert

system to provide the submarine Ship's Duty Officer (SDO)

preventive maintenance expertise for the safe and effective

execution of all maintenance aboard ship. The preventive

maintenance knowledge is drawn from a variety of sources of

expertise stored in different knowledge bases that are

physically dispersed in a network of personal computers.

13. Touchstone

Touchstone is a criteria development program for group

DSS. Based on the Delphi brainstorming technique, Touchstone

is a text-based GDSS to help group members generate problems

and explore solutions.

C. CALIBRATING THE COCOMO MODEL FOR DSS

Using ICEM and its 13-project DSS database, the calibrated

Intermediate COCOMO equation is shown below:

63

MM = 1.69 KDSI .5 * EAF.

Table 8.2 reproduces the estimated efforts (MMest) and the

adjusted effort values (MMadj), using the calibrated

Intermediate COCOMO model incorporating the above equation.

The Effort Adjustment Factors (EAFs) were derived from close

observations of the projects. Detailed description of the

conditions under which these software were developed can be

found in the related technical reports or theses (for more

information regarding the computation of the cost drivers,

contact the thesis' advisor).

TABLE 8.2

EFFORT ESTIMATES USING CALIBRATED INTERMEDIATE
ORGANIC COCOMO MODEL

Project KDSI EAF MMest MMadj %ERR

CO-OP 16.0 0.94 13.72 12.89 -14.00
INTEG 3.0 1.15 3.88 14.46 -36.00
CEA 9.0 0.90 8.89 8.00 14.00
TAO 4.0 0.85 4.82 4.10 -31.60
CEASAR 5.0 0.98 5.70 5.59 11.80
NURSE 5.0 1.26 5.70 7.18 -24.40
ASDB 6.0 1.00 6.54 6.54 .62
COCOMO 3.0 1.30 3.88 5.04 -32.80
NAVAIR 2.5 0.90 3.38 3.04 -62.00
CAI 2.5 1.50 3.38 4.22 5.50
STOCKPT 6.0 1.00 6.54 6.54 118.00
DIST.ES 6.5 1.10 6.59 7.65 -4.30
TOUCH 9.5 1.00 9.26 9.26 42.40

% Mean Error = -1.0%
Sum of the squared errors 72.22

64

Table 8.3 reproduces these efforts using Boehm's Inter-

mediate Organic COCOMO model which has not been calibrated to

the DSS environment.

TABLE 8.3

EFFORT ESTIMATES USING NON-CALIBRATED INTERMEDIATE
ORGANIC COCOMO MODEL

F

Project KDSI EAF MMest MMadj %ERR

CO-OP 16.0 0.94 58.81 55.28 268.53
INTEG 3.0 1.15 10.16 11.66 66.57
CEA 9.0 0.90 32.14 28.93 313.29
TAO 4.0 0.85 13.72 11.66 94.33
CEASAR 5.0 0.98 17.34 16.99 239.80
NURSE 5.0 1.26 17.34 21.85 130.00
ASDB 6.0 1.00 21.00 21.00 223.08
COCOMO 3.0 1.30 10.14 13.18 75.73
NAVAIR 2.5 0.90 8.38 7.54 -5.75
CAI 2.5 1.50 8.38 12.56 214.00
STOCKPT 6.0 1.00 21.00 21.00 600.00
DIST.ES 6.5 1.10 22.84 25.12 214.00
TOUCH 9.5 1.00 34.02 34.02 423.38

% Mean Error = 219.77%
Sum of the squared errors 4143.88

D. DISCUSSIONS

Based on the data gathered in Tables 8.1, 8.2 and 8.3, a

number of observations can be made:

- As expected, estimations using the calibrated model is by
far much more closer to actual figures. The percentage
means of errors are -1% and 220% for the calibrated and
non-calibrated models respectively. The sum of the
squared errors drops from 4143.88 to 72.22 when using the
calibrated model.

- Actual MMs of DSS projects using software generators such
as expert systems shells (i.e., VP-Expert, Exsys), data

65

base management systems (dBase III), or spreadsheet
(i.e., Knowledgeman) are significantly lower than
estimated MM. This suggest that DSS generators do help
increase software productivity. The difference in using
4GL as opposed to 2GL was demonstrated by Verner and
Tate, who found that using 4GL to build a DSS reduced
development effort and schedule compared with Cobol in
all phases of the life cycle except the requirements
phase. [Ref. 48]

- The data also suggest that small-size, organic DSS,
projects developed by one person appear to require less
effort than those involving more than one person. The
COCOMO effort adjustment factor (EAF) does not take into
consideration the number of people associated in the
software development. It is suspected that interpersonal
communications as well as coordination and division of
labor contributed to these discrepancies. However, it is
not evident that there is a direct linear relationship
between the number of personnel working on a project and
the total MM required.

- A final comment relates to the experience in counting
function points for the 13 DSS. Unlike SLOC measure-
ments, ex-post data gathering for function points has
proved to be much more difficult. It is believed that
this process would have been much easier and more
accurate if data had been gathered during the early
phases of the software development. Additionally, the
Function Point model appears to be more adapted to be
used in a structured analysis setting where one can use
Data Flow Diagrams (DFDs) and Entity Relationship
Diagrams (ERDs) for data gathering purposes. Unfortu-
nately, none of the projects in the DSS database
incorporated structured analysis techniques in their
development. This made data gathering much more
difficult and inaccurate.

66

IX. CONCLUSIONS AND RECOMMENDATIONS

A. CONCLUSIONS

The purpose of this thesis was to provide a tool to

facilitate the tailoring of software effort estimation tools

to the small-scale, organic DSS environment. The most popular

cost estimation models were reviewed in Chapters IV, V and VI.

It was found that none of these techniques were conducive to

a DSS software development environment.

ICEM was implemented as a workbench to calibrate the

COCOMO and the function point metrics for DSS (Chapter VII).

Using a database of 13 projects, a calibrated COCOMO model was

derived (Chapter VIII). As expected, the study has found that

the calibration was a critical condition when using parametric

models. The findings also revealed some weaknesses of the

COCOMO models for DSS effort estimation.

Because of the inherent inaccuracies of estimation tech-

niques, a model that can consistently estimate the effort and

cost of software development with a high degree of accuracy

still does not exist. However, by using a combination of

modeling tools particularly tailored to the user's environ-

ment, better estimates can be made.

Cost estimation models should not be implemented with the

intent of replacing the experienced estimator. Rather they

should be used as a tool to assist the estimator. They should

67

be used to reinforce the estimator's decisions not replace

them. They can be also be used to perform sensitivity

analysis and to keep track of the evolution of the cost

patterns. ICEM was implemented with this concept in mind.

B. RECOMMENDATIONS FOR FURTHER RESEARCH

The calibrated equation for DSS proposed in Chapter VIII

proved to be much more accurate than the original COCOMO

equation. To further improve the accuracy of the model, the

DSS database should be regularly updated and the model

recalibrated. Due to environmental changes old projects in

the database may have to be deleted as their information

becomes obsolete or outdated while new data should be added to

the database. It is recommended that ICEM be coupled with a

database management system for that purpose. Additionally, if

the size of the data permits, the model should be calibrated

using subsets of data points according to the types of

programming environment, DBMS, expert system shells, and 4GLs.

By tailoring the model to the specific environment and

programming language being used in the project, more accurate

estimates are possible. Last but not least, the parameters

used in the ICEM knowledge base to determine cost drivers were

derived from large-scale projects. It is desirable that these

factors also be calibrated to DSS environments to further

improve the accuracy of the estimation.

68

APPENDIX A

SAMPLE SESSION

I. A TYPICAL ICEM CONSULTATION

A. OVERVIEW

This appendix is an example of a session using the Intelligent
Cost Estimation Model (ICEM). The figures which follow are similar
to actual screen outputs of the ICEM model as run on an IBM AT
personal computer. In VP-Expert, the user highlights menu items to
be selected. In this appendix, highlighted items are shown in bold
and underlined type. The total run-time of a typical session is
between five and ten minutes.

B. RUNNING ICEM

To start the ICEM model simply type GO and the welcome screen
will be displayed, Figure A.1. If any key is depressed the next
screen will be displayed, Figure A.2. The first option the user
must decide is whether to retrieve a previously saved file. All
previously saved files end with the extension .WKS, such as
DSSCOC.WKS. Since VP-Expert requires the file name to be pre-
specified within the knowledge base, only the following files may
be retrieved: ORGANIC.WKS, SEMIDET.WKS, EMBEDDED.WKS, DSSCOC.WKS,
and DSSFP.WKS. Since all spreadsheets are saved under these names
the user is advised to copy all spreadsheets files that they would
like to save to a new filename, otherwise ICEM will copy over the
spreadsheet the next time it is run. If a file is saved under a
different name then it may viewed by typing: VPP <filename>. To
exit ICEM simply type /q when it is displayed at the bottom of the
screen, depending on the user's location within the program it may
be necessary to repeat the q or /q process to exit.

Since a previously saved file was not retrieved, the next
question addressed to the user is which model they would like to
select. There are three different models available within ICEM:
the intermediate COCOMO model for all modes of operation, the
intermediate COCOMO model (organic mode) which has been calibrated
to the DSS environment, and a parametric model which incorporates
the Function Point size metric.

For this session the COCOMO model calibrated for the DSS
environment is selected. The next input the model requests is for
an estimate of the number of thousands of lines of coae the program

69

will have. Additionally, the COCOMO model requires 15 cost driver
values which take into account factors effecting the estimation.
The user must select one of the five options displayed for each of
these cost drivers. Descriptions of each selection are provided to
the user.

Based on the user's inputs appropriate values are retrieved
from the rule base and saved to the appropriate cells of the
spreadsheet. The spreadsheet is then retrieved for the user.
Figure A.3, displays appropriate output values. The final
estimated value of the number of man-months required to complete
the project is described as MMadj. To perform sensitivity analysis
the user may change the number of KDSI or any of the values of the
cost drivers, all output values are instantly recalculated. Only
the cost driver values specified in Figure A4 should be used.
Figure A.5 displays a sample output using the Function point model.

Welcome to the ICEM model!

The ICEM model is an integrated cost estimation model
which uses an expert system to automate the Intermediate
COnstructive Cost Estimation MOdel (COCOMO), developed by
Barry W. Boehm and the Function Point Model, developed by
Allen Albrecht. Both of these models have been tailored to
the unique environment of Decision Support Systems (DSS).

Press any key to continue!

Figure A.l

The ICEM model is actually three models in one. The
COCOMO Intermediate model has been automated for all modes
of operation including organic, semidetached and embedded
modes. The second model specifically tailors the COCOMO
semidetached mode for the DSS environment. The third model
tailors the Function Point model for the DSS environment.

Press any key to begin the consultation.

Figure A.2

70

Would your like to retrieve a previously saved file?

YES NO

Which of the following models would you like to select?

COCOMO = Regular COCOMO
DSSCOC = COCOMO Tailored for DSS environment
DSSFP = Function Point model tailored for DSS environment

COCOMO DSSCOC DSSFP

This model is designed to be used as a cost
estimation tool for Decision Support System projects that
meet the requirements as specified by the Organic mode of
the Intermediate COCOMO model. The following
characteristics apply to projects which meet these
requirements:

a. Generally stable development environment.
b. Minimal need for innovation in architectures of

algorithms.
c. Relatively small size.
d. Relatively low premium on early completion of

the project.
e. Software project range usually not greater than

50 KDSI.
f. Loose coupling with external systems.

This calibrated model estimates the development time
and cost (in man-months) of a software project based on
inputs of estimated number of thousand of delivered source
instructions (KDSI), and values for 15 cost drivers.
Nominal values of 1.0 may be entered for unknown cost driver
information.

71

What is your best estimation on the number of thousands
of delivered source instructions your program will have?

5

You have entered 5 kdsi.

(Press enter to continue)

Cost drivers are factors to consider in developing a
model for estimating the cost of a software project. The
drivers are grouped into four categories: software product
attributes, computer attributes, personnel attributes, and
project attributes.

Press enter to continue

The product attributes are:

RELY - required software reliability,

DATA - data base size, and

CPLX - product complexity.

Press enter to continue

72

The computer attributes are:

TIME - execution time constraint,

STOR - main storage constraint,

VIRT - virtual machine volatility, and

TURN - computer turnaround time.

Press enter to continue

The personnel attributes are:

ACAP - analyst capability,

AEXP - applications experience,

PCAP - programmer capability,

VEXP - virtual machine experience, and

LEXP - programming language experience.

Press enter to continue

The project attributes are:

MODP - modern programming practices,

TOOL - use of software tools

SCED - required development schedule.

Press enter to continue

73

Each of these cost driver attributes determines a
multiplying factor which estimates the effect of the
attribute on software development. These multipliers
are applied to a nominal COCOMO development effort estimate
to obtain a refined estimate of software development effort.

Press enter to continue

Ratings RELY: VLOW - effect, slight inconvenience.
LOW - easily recoverable losses.
NOM - moderate, recoverable losses.
HIGH - high financial loss.
VHI AND XTRAHI - risk to human life.

Select a rating for required software reliability (RELY).
VLOW LOW NOM
HI VHI XTRAHI

Ratings DATA: VLOW and LOW - DB bytes/ prog. DSI < 10.
NOM - 10 <= D/P <= 100.
HIGH - 100 <= D/P <=1000.
XTRAHI - D/P >= 1000.

Select a rating for data base size (DATA).
VLOW LOW NOM
HI VHI XTRAHI

Ratings CPLX: VLOW - straightline code.
LOW - straightforward nesting of structured

programming
NOM - mostly simple nesting.
HIGH - highly nested SP operators.
VHI - reentrant and recursive coding.
XTRAHI-microcode level control.

Select a rating for product complexity (CPLX).
VLOW LOW NOM
HI VHI XTRAHI

74

Ratings TIME: VLOW, LOW - 50 % use of available execution time.
NOM - 50 % use of available execution time.
HIGH 70 %.
VHI - 85 %.
XTRAHI - 95 %.

Select a rating for execution time constraint (TIME).
VLOW LOW NOM
HI VHI XTRAHI

Ratings STOR: VLOW, LOW, NOM- 50 % use of available storage.
HIGH - 70 %.
VHI - 85 %.
XTRAHI - 95 %.

Select a raLing for main storage 7onstraint (STOR).
VLOW LOW NOM
HI VHI XTRAHI

Ratings VIRT: VLOW - major change every 12 months, minor: 1 month.
LOW - mejor change every 12 months, minor: 1 month.
NOM - major: 6 months minor: 2 weeks
HIGH - major: 2 months minor: 1 week.
VHI, XTRAH1 - major: 2 weeks minor: 2 days.

Select a ratin, for virtual machine volatility (VIRT).
VLOW LOW NOM
HI VHI XTRAHI

Ratings TURN: VLOW, LOW - interactive.
NOM - average turnaround < 4 hour-
HIGH - 4-12 hours.
VHI,XTRAHI - >12 hours

Select a rating for computer turnaround time (TURN).
VLOW LOW NOM
HI VHI XTRAHI

Ratings ACAP: VLOW - 15th percentile.
LOW - 35th.
NOM - 55th.
HIGH - 75th.
VHI, XTRAHI - 90th.

Select a rating for analyst capability (ACAP).
VLOW LOW NOM
HI VHI XTRAHI

75

Ratings AEXP: VLOW - <= 4 months experience.
LOW - 1 year.
NOM - 3 years.
HIGH - 6 years.
VHI,XTRAHI - 12 years.

Select a rating for applications experience (AEXP).
VLOW LOW NOM
HI VHI XTRAHI

Ratings PCAP: VLOW - 15th percentile.
LOW - 35th.
NOM - 55th.
HIGH - 75th.
VHI, XTRAHI - 90th.

Select a rating for programmer capability (PCAP).
VLOW LOW NOM
HI VHI XTRAHI

Ratings VEXP: VLOW - <= 1 month.
LOW - 4 months.
NOM - 1 year.
HIGH, VHI, XTRAHI - 3 years.

Select a rating for virtual machine experience (VEXi).
VLOW LOW NOM
HI VHI XTRAHI

Ratings LEXP: VLOW - 1 month experience.
LOW - 4 months.
NOM - 1 year.
HIGH, VHI, XTRAHI - 3 years.

Select a rating for programming language experience (LEXP).
VLOW LOW NOM
HI VHI XTRAHI

Ratings MODP: VLOW - no use.
LOW - beginning use.
NOM - some use.
HIGH - general use.
VHI, XTRAHI - routine use.

Select a rating for modern programming practices (MODP).
VLOW LOW NOM

HI VHI XTRAHI

76

Ratings TOOL: VLOW - basic microprocessor tools.
LOW - basic mini tools.
NOM - basic midi/maxi tools
HIGH - strong maxi programming, test tools.
VHI, XTRAHI - add requirements, design, management,

documentation tools.

Select a rating for use of software tools (TOOL).
VLOW LOW NOM
HI VHI XTRAHI

Ratings SCED: VLOW - 75 % of nominal.
LOW - 85 %.
NOM - 100 %.

HIGH - 130 %.

VHI, XTRAHI - 160 %.

Select a rating for required development schedule (SCED).
VLOW LOW NOM
HI VHI XTRAHI

You have chosen the DSS COCOMO model!

(Saving Data to Spreadsheet, Please Wait...)

VALUES SAVED!

(PRESS ANY KEY TO VIEW SPREADSHEET CALCULATIONS)

77

INTERMEDIATE COCOMO ORGANIC MODE EFFORT/SCHEDULE

KDSI = 5.00 COST DRIVERS ** CTRL Fl ** TO VIEW
DEFINITIONS

MM = 17.34 RELY .75
DATA .94 ** CTRL F2 ** TO VIEW

TDEV = 7.39 CPLX 1.00 COST DRIVER RATINGS
TIME 1.00

EAF = 1.11 STOR 1.00 ** CTRL F3 ** TO SAVE
VIRT .87 RESULTS TO: DSSCOC.WKS
TURN 1.00 AND EXIT SPREADSHEET
ACAP 1.19

MMadj = 19.24 AEXP 1.29 ** YOU MAY CHANGE KDSI
PCAP 1.00 AND COST DRIVER VALUES

#PERS = 2.60 VEXP 1.21 AS NEEDED
LEXP 1.07

PROD = 259.92 MODP .91
TOOL 1.00 * For DSS projects *
SCED 1.00

Figure A.3

COST DRIVERS

VLOW LOW NOM HIGH VHI XtraHI
RELY .75 .88 1.00 1.15 1.40 1.40
DATA .94 .94 1.00 1.08 1.16 1.16
CPLX .70 .85 1.00 1.15 1.30 1.65
TIME 1.00 1.00 1.00 1.11 1.30 1.66 ** (CTRL F5) TO
STOR 1.00 1.00 1.00 1.06 1.21 1.56 RETURN TO MAIN
VIRT .87 .87 1.00 1.15 1.30 1.30 SPREADSHEET
TURN .87 .87 1.00 1.07 1.15 1.15
ACAP 1.46 1.19 1.00 .86 .71 .71
AEXP 1.29 1.13 1.00 1.00 .91 .82
PCAP 1.42 1.17 1.00 .86 .70 .70
VEXP 1.21 1.10 1.00 .90 .90 .90
LEXP 1.14 1.07 1.00 .95 .95 .95
MODP 1.24 1.10 1.00 .91 .82 .82
TOOL 1.24 1.10 1.00 .91 .83 .83
SCED 1.23 1.08 1.00 1.04 1.10 1.10

Figure A.4

78

FUNCTION POINT MODEL EFFORT/SCHEDULE

FUNCTION Value CPLX COUNT RATINGS ** CTRL F1 ** TO
VIEW COMPLEXITY

Inputs = 25 3 75 QI. 1.00 RATINGS
Outputs = 7 5 35 Q2. 3.00

Inquiries = 5 3 15 Q3. 2.00 ** CTRL F3 ** TO
Files = 6 7 42 Q4. 4.00 SAVE RESULTS TO:

Interfaces = 3 5 15 Q5. 2.00 DSSFP.WKS AND EXIT
Total = 182 Q6. 3.00 SPREADSHEET

Q7. 2.00
Q8. 1.00 ** YOU MAY CHANGE

RATINGS = 38.00 Q9. 4.00 FUNCTION VALUES
Q10. 2.00 AND COMPLEXITY

FP = 187.46 QII. 3.00 RATINGS AS NEEDED
Q12. 4.00

MM = 2.50 Q13. 2.00
Q14. 5.00

Figure A.5

79

APPENDIX B

SOURCE CODE

The source code for the two knowledge bases (ICEMI.KBS) and
(ICEM2.KBS) is displayed in sections A and B respectively.

A. (ICEMl.KBS) FILE
RUNTIME;
EXECUTE;
BKCOLOR=3;
ACTIONS

WOPEN 1,3,5,13,70,1
ACTIVE 1
color = 15
DISPLAY "

Welcome to the ICEM model!

The ICEM model is an integrated cost estimation model
which uses an expert system to automate the Intermediate
COnstructive Cost Estimation MOdel (COCOMO), developed by
Barry W. Boehm and the Function Point Model, developed by
Allen Albrecht. Both of these models have been tailored to
the unique environment of Decision Support Systems (DSS).

Press any key to continue!-"
WCLOSE 1
WOPEN 1,3,5,12.70,1
ACTIVE 1
color = 15
DISPLAY "

The ICEM model is actually three models in one. The
COCOMO intermediate model has been automated for all modes
of operation including organic, semidetached and embedded
modes. The second model specifically tailors the COCOMO
semidetached mode for the DSS environment. The third model
tailors the Function Point model for the DSS environment.

Press any key to begin the consultation.-"
WCLOSE 1
color = 0
CLS
FIND continue
review = YES
WHILETRUE model = COCOMO and review = YES THEN

CLS
WOPEN 1,3,5,12,70,1

80

ACTIVE 1
color = 15
DISPLAY "

The Intermediate COCOMO model uses 15 cost drivers
applied to various attributes of a software project,
the estimated number of thousand of delivered source
instructions (KDSI), and the development mode to estimate
the development time and cost of a software development
project.

- I,

CLS
DISPLAY "

The development mode of the project is determined by
its size and complexity. The development mode may be
considered either ORGANIC, SEMIDETACHED, or EMBEDDED.
A listing of criteria for each mode follows. Determine
the mode that best identifies your software project.

CLS
DISPLAY "

1. ORGANIC

a. Generally stable development environment.
b. Minimal need for innovation in architectures of

algorithms.
c. Relatively small size.
d. Relatively low premium on early completion of

the project.
e. Software project range usually not greater than

50 KDSI.
f. Loose coupling with external systems.-"

CLS
DISPLAY "

2. SEMIDETACHED

a. Mixture of organic and embedded characteristics.
b. Intermediate level of experience with related

systems.
c. Wide mix of experienced and inexperienced people.
d. Some experience with aspects of system under

development.
e. Software project range usually not greater than

300 KDSI.
- II

CLS
DISPLAY "

81

3. EMBEDDED

a. Much innovation required.
b. Integral part of some larger system with

inflexibility.
c. Interface requirements.
d. High required reliability.
e. Development within tight time and cost constraints.
-11

WCLOSE 1
color = 0
CLS
RESET review
FIND review

END
review = YES
WHILETRUE model = DSSCOC and review = YES THEN

CLS
WOPEN 1,1,5,20,70,1
ACTIVE 1
color = 15
DISPLAY "

This model is designed to be used as a cost
estimation tool for Decision Support System projects that
meet the requirements as specified by the Organic mode of
the Intermediate COCOMO model. The following
characteristics apply to projects which meet these
requirements:

a. Generally stable development environment.
b. Minimal need for innovation in architectures of

algorithms.
c. Relatively small size.
d. Relatively low premium on early completion of

the project.
e. Software project range usually not greater than

50 KDSI.
f. Loose coupling with external systems.
- I1

WCLOSE 1
WOPEN 1,3,5,12,70,1
ACTIVE 1
color = 15
CLS
DISPLAY "

This calibrated model estimates the development time
and cost (in man-months) of a software project based on
inputs of estimated number of thousand of delivered scource
instructions (KDSI), and values for 15 cost drivers.

82

Nominal values of 1.0 may be entered for unknown cost driver
information.

- I1

review = NO
WCLOSE 1
color = 0

END
review = YES
WHILETRUE model = DSSFP and review = YES THEN

WOPEN 1,3,5,12,70,1
ACTIVE 1
color = 15
CLS
DISPLAY "
The Function Point model makes effort estimates based

on Allen Albrecht's function point sizing metric.
metric based on five project factors which are measured by
the user. These include:

1. Inputs
2. Outputs
3. Inquiries
4. Files
5. Interfaces

- II

WCLOSE 1
WOPEN 1,3,5,17,70,1
ACTIVE 1
color = 15
CLS
DISPLAY "
Due to difficulties in ex-post data gathering it

was not possible to properly calibrate the model for
the DSS environment. However, the framework for the
model has been completed and the model has automated
the process of determining the function point sizing
metric. In order for the model to be able to make
effort estimates on projects it must be calibrated to
the users's environment. The method for calculating
calibration coefficients is explained in Chapter V,
section D of the thesis. Once the coefficients have
been calculated they should be added to the (MM) effort
equation located in cell B18 of the DSSFP.WKS
spreadsheet.

Press any key to begin-"
review = NO
WCLOSE 1
color - 0
CLS

END
FIND finish;

83

!*******************START RULES BLOCK **********

RULE 1
IF retreive =YES and file <> UNKOWN
THEN Display"

ABOUT TO VIEW SAVED SPREADSHEET FILE"
COLOR = 30
DISPLAY"

(PRESS ENTER TO CONTINUE!)-"'
COLOR = 0
SAVEFACTS fixvalue
continue = NO;

RULE 2
IF retreive = NO and Model <> UNKOWN
THEN continue = YES;

RULE 3
IF continue=YES and model=COCOMO and mode=ORGANIC and

kdsi=OK and LASTDRIVE=DONE
THEN DISPLAY "1

You have chosen the (MODEL) (MODE) mode"'
COLOR = 30
DISPLAY"

(SAVING DATA TO SPREADSHEET, PLEASE WAIT....)

PWKS kdsi-value, C4, c:\vpexp\organic
PWKS rrating, G6, c:\vpexp\organic
PWKS drating, G7, c:\vpexp\organic
PWKS crating, G8, c:\vpexp\organic
PWKS trating, G9, c:\vpexp\organic
PWKS srating, G10, c:\vpexp\organic
PWKS vrating, G11, c:\vpexp\organic
PWKS turrating, G12, c:\vpexp\organic
PWKS acrating, G13, c:\vpexp\organic
PWKS aerating, G14, c:\vpexp\organic
PWKS prating, G15, c:\vpexp\organic
PWKS verating, G16, c:\vpexp\organic
PWKS lrating, G17, c:\vpexp\organic
PWKS mrating, G18, c:\vpexp\organic
PWKS torating, G19, c:\vpexp\organic
PWKS scrating, G20, c:\vpexp\organic

RESET ALL
retreive = NO
mode = ORGANIC
SAVEFACTS fixvalue
finish = DONE;

84

RULE 4
IF continue=YES and xnodel=COCOMO and mode=SEMIDETACHED and

kdsi=OK and LASTDRIVE = DONE
THEN DISPLAY "1

You have chosen the (MODEL) (MODE) mode"'
COLOR = 30
DISPLAY"

(SAVING DATA TO SPREADSHEET, PLEASE WAIT....)
of

PWKS kdsi-value, C4, c:\vpexp\semidet
PWKS rrating, G6, c:\vpexp\semidet
PWKS drating, G7, c:\vpexp\semidet
PWKS crating, G8, c:\vpexp\semidet
PWKS trating, G9, c:\vpexp\semidet
PWKS srating, G10, c:\vpexp\semidet
PWKS vrating, G1l, c:\vpexp\semidet
PWKS turrating, G12, c:\vpexp\semidet
PWKS acrating, G13, c:\vpexp\semidet
PWKS aerating, G14, c:\vpexp\semidet
PWKS prating, G15, c:\vpexp\semidet
PWKS verating, G16, c:\vpexp\semidet
PWKS lrating, G17, c:\vpexp\seinidet
PWKS mrating, G18, c:\vpexp\semidet
PWKS torating, G19, c:\vpexp\semidet
PWKS scrating, G20, c:\vpexp\semidet

RESET ALL
retreive = NO
mode = SEMIDETACHED
SAVEFACTS fixvalue
finish = DONE;

RULE 5
IF continue=Yes and model=COCOMO and mode=EMBEDDED and

kdsi=OK and LASTDRIVE = DONE
THEN DISPLAY 11

You have chosen the (MODEL) (MODE) mode"'
COLOR = 30
DISPLAY"

(SAVING DATA TO SPREADSHEET, PLEASE WAIT....)

PWKS kdsi-value, C4, c:\vpexp\organic
PWKS rrating, G6, c:\vpexp\organic
PWKS drating, G7, c:\vpexp\organic
PWKS crating, G8, c:\vpexp\organic
PWKS trating, G9, c:\vpexp\organic
PWKS srating, G10, c:\vpexp\organic

85

PWKS vrating, G1l, c:\vpexp\organic
PWKS turrating, G12, c:\vpexp\organic
PWKS acrating, G13, c:\vpexp\organic
PWICS aerating, G14, c: \vpexp\organic
PWKS prating, G15, c:\vpexp\organic
PWKS verating, G16, c:\vpexp\organic
PWKS irating, G17, c:\vpexp\organic
PWKS mrating, G18, c:\vpexp\organic
PWKS torating, G19, c:\vpexp\organic
PWKS scrating, G20, c:\vpexp\organic

RESET ALL
retreive = NO
mode = EMBEDDED
SAVEFACTS fixvalue
finish = DONE;

RULE 6
IF continue = YES and model =DSSCOC and kdsi=OK and

LASTDRIVE = DONE
THEN DISPLAY "1

You have chosen the DSS COCOMO model"
COLOR = 30
DISPLAY"

(SAVING DATA TO SPREADSHEET, PLEASE WAIT....)
go

PWKS kdsi-value, C4, c:\vpexp\dsscoc
PWKS rrating, G6, c:\vpexp\dsscoc
PWKS drating, G7, c:\vpexp\dsscoc
PWKS crating, G8, c:\vpexp\dsscoc
PWKS trating, G9, c:\vpexp\dsscoc
PWKS srating, G10, c:\vpexp\dsscoc
PWKS vrating, G1l, c:\vpexp\dsscoc
PWKS turrating, 012, c:\vpexp\dsscoc
PWKS acrating, G13, c:\vpexp\dsscoc
PWKS aerating, G14, c:\vpexp\dsscoc
PWKS prating, G15, c:\vpexp\dsscoc
PWKS verating, G16, c:\vpexp\dsscoc
PWKS 1rating, G17, c:\vpexp\dsscoc
PWKS mrating, 018, c:\vpexp\dsscoc
PWKS torating, G19, c:\vpexp\dsscoc
PWKS scrating, G20, c:\vpexp\dsscoc

RESET ALL
retreive = NO
model = dsscoc
SAVEFACTS fixvalue
finish = DONE;

86

RULE 7
IF continue = YES and model = DSSFP
THEN FIND inputs

CLS
DISPLAY "

Classifying inputs for complexity depends on two things:
the number of files referenced or accessed, and the number of
data items (fields or specific variables) referenced. Use the
following chart for classifying inputs:

Press any key to view chart!

CLS
DISPLAY "

1-4 data items 5-15 16 or more
referenced data items

0 or 1 file(s) Simple (3) Simple (3) Average (4)
referenced

2 files Simple (3) Average (4) Complex (6)
referenced

3 or more Average (4) Complex (6) Complex (6)
files ref.

I'

FIND input cplx
CLS
FIND outputs
CLS
FIND outputcplx
CLS
FIND inquiries
CLS
DISPLAY "

Classifying inquiries consists of two parts:
classifying the inputs and classifying the outputs. The
same charts are used for inputs and outputs as before. The
only difference is that while a stand alone input actually
updates the data store, an inquiry only directs the search
and never updates. Use the following chart to classify the
input inquiries:

Press any key to view chart!
-to,

CLS
DISPLAY "

87

Input part: 1-4 data items 5-15 16 or more
referenced data items

0 or 1 file(s) Simple (3) Simple (3) Average (4)
referenced

2 files Simple (3) Average (4) Complex (6)
referenced

3 or more Average (4) Complex (6) Complex (6)
files ref.

ii

FIND ininquircplx
CLS
FIND outinquir_cplx
CLS
FIND inquir cplx
CLS
FIND files
CLS
DISPLAY "

Classifying files is also a two step process which
involves cross referencing the number of data items actually
required by the application with the number of record formats
within the file or the number of logical relationships in
which the file participates are counted. Use the following
chart to determine the file complexity factor:

Press any key to view chart!
-to,

CLS
DISPLAY "

1-19 data 20-50 51 or more
items ref. data items

1 logical record Simple (7) Simple (7) Average (10)
format/relationship

2-5 logical Simple (7) Average (10) Complex (15)
record format/
relationships

6 or more Ave. (10) Complex (15) Complex (15)
logical record
format/relationships

'I

FIND filecplx

88

CLS
FIND interfaces
CLS
DISPLAY "

The classification scheme for interfaces is similar to the
one used for files. Use the following chart to determine the
interface complexity factor:

Press any key to view chart!

CLS
DISPLAY "

1-19 data 20-50 51 or more
items ref. data items

1 logical record Simple (7) Simple (7) Average (10)
format/relationship

2-5 logical Simple (7) Average (10) Complex (15)
record format/
relationships

6 or more Ave. (10) Complex (15) Complex (15)
logical record
format/relationships

U,

FIND intercplx
CLS
FIND Q1
CLS
FIND Q2
CLS
FIND Q3
CLS
FIND Q4
CLS
FIND Q5
CLS
FIND Q6
CLS
FIND Q7
CLS
FIND Q8
CLS
FIND Q9
CLS
FIND Q10
CLS
FIND Qll

89

CLS
FIND Q12
CLS
FIND Q13
CLS
FIND Q14
C LS

DISPLAY"
You have chosen the DSS Function Point model"

COLOR = 30
DISPLAY"

(SAVING DATA TO SPREADSHEET, PLEASE WAIT....)

PWSipts 6':vpx~sf

PWKS intputs, B, c:\vpexp\dssfp
PWKS onuputs, B, c:\vpexp\dssfp
PWKS finqies, 8, c:\vpexp\dssfp
PWKS filtres, B 0, c:\vpexp\dssfp
PWKS inptrfces, D6O, c:\vpexp\dssfp
PWKS intput cplx, D, c:\vpexp\dssfp
PWKS onuputcplx, D7, c:\vpexp\dssfp
PWKS finquicplx, D, c:\vpexp\dssfp
PWKS filte_cplx, D1, c:\vpexp\dssfp

PWKS iner1p, DH6 , c:\vpexp\dssfp

PWKS Q2, H6, c:\vpexp\dssfp
PWKS Q2, H8, c:\vpexp\dssfp
PWKS Q4, H9, c:\vpexp\dssfp
PWKS Q5, H9, c:\vpexp\dssfp
PWKS Q6, H11, c:\vpexp\dssfp
PWKS Q7, H12, c:\vpexp\dssfp
PWXS Q8, 131, c:\vpexp\dssfp
PWKS Q9, H14, c:\vpexp\dssfp
PWKS Q1, H1, c:\vpexp\dssfp
PWKS Q11, H16, c:\vpexp\dssfp
PWKS Q12, H17, c:\vpexp\dssfp
PWKS Q13, H18, c:\vpexp\dssfp
PWKS Q14, H19, c:\vpexp\dssfp

RESET ALL
retreive = NO
model = DSSFP
SAVEFACTS fixvalue
finish = DONE;

90

RU LE 8
IF out inquircplx = 7
THEN inquircplx = 7;

RULE 9
IF out inquircplx = 5 and in inquircplx = 6
THEN inquircplx = 6;

RULE 10
IF out- inquir cplx = 5 and in inquir_cplx < 6
THEN inquircplx = 5;

RULE 11
IF out inquircplx = 4 and in inquir-cplx = 6
THEN inquircplx = 6;

RULE 12
IF out-inquir~cplx = 4 and in inquir-cpix < 6
THEN inquircplx = 4;

RULE 13
IF kdsi value<=-,
THEN WHILETRUE kdsi value<=0 THEN

CLS
COLOR = 30
DISPLAY"

You must enter a value greater than 0
You have entered {kdsi value) kdsi.

COLOR = 0
RESET kdsi value
FIND kdsi value

END
DISPLAY"'

You have entered (kdsi-value) kdsi."1
COLOR = 30
DISPLAY"

(Press Enter to continue)

COLOR =0

kdsi =OK;

RULE 14
IF kdsi value > 0
THEN DISPLAY"

You have entered {kdsi value) kdsi."1
COLOR = 30
DISPLAY"

91

(Press enter to continue)

COLOR = 0
kdsi OK;

RULE 15
IF kdsi = ok
THEN CLS

WOPEN 2,3,5,16,70,1
ACTIVE 2
COLOR = 15
DISPLAY"

Cost drivers are factors to consider in developing a
model for estimating the cost of a software project. The
drivers are grouped into four categories: software product
attributes, computer attributes, personnel attributes, and
project attributes.

Press enter to continue-"
CLS
DI.3PLAY"

The product attributes are:

RELY - required software reliability,

DATA - data base size, and

CPLX - product complexity.

Press enter to continue-"

CLS
DISPLAY"

The computer attributes are:

TIME - execution time constraint,

STOR - main storage constraint,

VIRT - virtual machine volatility, and

TURN - computer turnaround time.

92

Press enter to continue-"

CLS
DISPLAY"

The personnel attributes are:

ACAP - analyst capability,

AEXP - applications experience,

PCAP - programmer capability,

VEXP - virtual machine experience, and

LLXP - programming language experience.

Press enter to continue-"

CLS
DISPLAY"

The project attributes are:

MODP - modern programming practices,

TOOL - use of software tools

SCED - required development schedule.

Press enter to continue-"

CLS
DISPLAY "

Each of these cost driver attributes determines a
multiplying factor which estimates the effect of the
attribute on software development. These multipliers
are applied to a nomial COCOMO development effort estimate
to obtain a refined estimate of software development effort.

Press enter to continue-"
WCLOSE 2
COLOR 0
CLS
S1.OW DONE;

RULE 16
IF SHOW = DONE and RELY = VLOW and driver2 = done

93

THEN RRATING = .75
lastdrive = DONE;

RULE 17
IF SHOW = DONE and RELY = LOW and driver2 = done
THEN RRATING = .88

LASTDRIVE = DONE;

RULE 18
IF SHOW = DONE and RELY = NOM and driver2 = done
THEN RRATING = 1.00

LASTDRIVE = DONE;

RULE 19
IF SHOW = DONE and RELY = VHI and driver2 = done
THEN RRATING = 1.40

LASTDRIVE = DONE;

RULE 20
IF SHOW = DONE and RELY = XTRAHI and driver2 = done
THEN RRATING = 1.40

LASTDRIVE = DONE;

RULE 21
IF SHOW = DONE and DATA = VLOW AND DRIVER3 = DONE
THEN DRATING = .94

DRIVER2 = DONE;

RULE 22
IF DATA = LOW AND DRIVER3 = DONE
THEN DRATING = .94

DRIVER2 = DONE;

RULE 23
IF DATA = NOM AND DRIVER3 = DONE
THEN DRATING = 1.00

DRIVER2 = DONE;

RULE 24
IF DATA = HI AND DRIVER3 DONE
THEN DRATING = 1.08

DRIVER2 = DONE;

RULE 25
IF DATA = VHI AND DRIVER3 = DONE
THEN DRATING = 1.16

DRIVER2 = DONE;

RULE 26
IF DATA = XTRAHI AND DRIVER3 = DONE

94

THEN DRATING = 1.16
DRIVER2 = DONE;

RULE 27
IF CPLX = VLOW AND DRIVER4 = DONE
THEN CRATING = .70

DRIVER3 = DONE;

RULE 28
IF CPLX = LOW AND DRIVER4 = DONE
THEN CRATING = .85

DRIVER3 = DONE;

RULE 29
IF CPLX = NOM AND DRIVER4 = DONE
THEN CRATING = 1.00

DRIVER3 = DONE;

RULE 30
IF CPLX = HI AND DRIVER4 DONE
THEN CRATING = 1.15

DRIVER3 = DONE;

RULE 31
IF CPLX = VHI AND DRIVER4 DONE
THEN CRATING = 1.30

DRIVER3 = DONE;

RULE 32
IF CPLX = XTRAHI AND DRIVER4 = DONE
THEN CRATING = 1.65

DRIVER3 = DONE;

RULE 33
IF TIME = VLOW AND DRIVER5 = DONE
THEN TRATING = 1.00

DRIVER4 = DONE;

RULE 34
IF TIME = LOW AND DRIVER5 = DONE
THEN TRATING = 1.00

DRIVER4 = DONE;

RULE 35
IF TIME = NOM AND DRIVER5 = DONE
THEN TRATING = 1.00

DRIVER4 = DONE;

RULE 36
IF TIME = HI AND DRIVER5 = DONE

95

THEN TRATING = 1.11
DRIVER4 = DONE;

RULE 37
IF TIME = VII AND DRIVER5 = DONE
THEN TRATING = 1.30

DRIVER4 = DONE;

RULE 38
IF TIME = XTRAHI AND DRIVER5 = DONE
THEN TRATING = 1.66

DRIVER4 = DONE;

RULE 39
IF STOR = VLOW AND DRIVER6 = DONE
THEN SRATING = 1.00

DRIVER5 = DONE;

RULE 40
IF STOR = LOW AND DRIVER6 = DONE
THEN SRATING = 1.00

DRIVER5 = DONE;

RULE 41
IF STOR = NOM AND DRIVER6 = DONE
THEN SRATING = 1.00

DRIVER5 = DONE;

RULE 42
IF STOR = HI AND DRIVER6 = DONE
THEN SRATING = 1.06

DRIVER5 = DONE;

RULE 43
IF STOR = VHI AND DRIVER6 = DONE
THEN SRATING = 1.21

DRIVER5 = DONE;

RULE 44
IF STOR = XTRAHI AND DRIVER6= DONE
THEN SRATING = 1.56

DRIVER5 = DONE;

RULE 45
IF VIRT = VLOW AND DRIVER7 = DONE
THEN VRATING = .87

DRIVER6 = DONE;

RULE 46
IF VIRT = LOW AND DRIVER7 = DONE

96

THEN VRATING = .87
DRIVER6 = DONF.

RULE 47
IF VIRT = NOM AND DRIVER7 = DONE
THEN VRATING = 1.00

DRIVER6 = DONE;

RULE 48
IF VIRT = HI AND DRIVER7 DONE
THEN VRATING = 1.15

DRIVER6 = DONE;

RULE 49
IF VIRT = VHI AND DRIVER7 = DONE
THEN VRATING = 1.30

DRIVER6 = DONE;

RULE 50
IF VIRT = XTRAHI AND DRIVER7 = DONE
THEN VRATING = 1.30

DRIVER6 = DONE;

RULE 51
IF TURN = VLOW AND DRIVER8 = DONE
THEN TURRATING = .87

DRIVER7 = DONE;

RULE 52
IF TURN = LOW AND DRIVER8 = DONE
THEN TURRATING = .87

DRIVER7 = DONE;

RULE 53
IF TURN = NOM AND DRIVER8 = DONE
THEN TURRATING = 1.00

DRIVER7 = DONE;

RULE 54
IF TURN = HI AND DRIVER8 = DONE
THEN TURRATING = 1.07

DRIVER7 = DONE;

RULE 55
IF TURN = VHI AND DRIVER8 = DONE
THEN TURRATING = 1.15

DRIVER7 = DONE;

RULE 56
IF TURN = XTRAHI AND DRIVER8 = DONE

97

THEN TURRATING = 1.15
DRIVER7 = DONE;

RULE 57
IF ACAP = VLOW 4ND DRIVER9 = DONE
THEN ACRATING = 1.46

DRIVER8 DONE;

RULE 58
IF ACAP = LOW AND DRIVER9 = DONE
THEN ACRATING = 1.19

DRIVER8 = DONE;

RULE 59
IF ACAP = NOM AND DRIVER9 = DONE
THEN ACRATING = 1.00

DRIVER8 = DONE;

RULE 60
IF ACAP = HI AND DRIVER9 = DONE
THEN ACRATING = .86

DRIVER8 = DONE;

RULE 61
IF ACAP = VHI AND DRIVER9 = DONE
THEN ACRATING .71

DRIVER8 = DONE;

RULE 62
IF ACAP = XTRAHI AND DRIVER9 = DONE
THEN ACRATING = .71

PDTVER8 = DONP;

RULE 63
IF AEXP = VLOW AND DRIVER10 = DONE
THEN AERATING = 1.29

DRIVER9 = DONE;

RULE 64
IF AEXP = LOW AND DRIVER10 = DONE
THEN AERATING = 1.13

DRIVER9 = DONE;

RULE 65
IF AEXP = NOM AND DRIVER10 = DONE
THEN AERATING = 1.00

DRIVER9 = DONE;

RULE 66
IF AEXP = HI AND DRIVER10 = DONE

98

THEN AERATING .91
DRIVER9 DONE;

RULE 67
IF AEXP = VHI AND DRIVER10 = DONE
THEN AERATING = .82

DRIVER9 DONE;

RULE 68
IF AEXP = XTRAHI AND DRIVER1O = DONE
THEN AERATING = .82

DRIVER9 DONE;

RULE 69
IF PCAP = VLOW AND DRIVER11 = DONE
THEN PRATING 1.42

DRIVER10 = DONE;

RULE 70
IF PCAP = LOW AND DRIVER11 = DONE
THEN PRATING = 1.17

DRIVER10 DONE;

RULE 71
IF PCAP = NOM AND DRIVER11 = DONE
THEN PRATING 1.00

DRIVER10 = DONE;

RULE 7Z
IF PCAP = HI AND DRIVER11 = DONE
THEN PRATING .86

DRIVER1!, DONE;

RULE 73
IF PCAP = VHI AND DRIVER11 = DONE
THEN PRATING .70

DRIVER10 = DONE;

RULE 74
IF PCAP = XTRAHI AND DRIVER11 = DONE
THEN PRATING .70

DRIVER10 = DONE;

RULE 75
IF VEXP = VLOW AND DRIVER12 = DONE
THEN VERATING = 1.21

DRIVER11 = DONE;

RULE 76
IF VEXP = LOW AND DRIVER12 = DONE

99

THEN VERATING = 1.10
DRIVER11 = DONE;

RJLE 77
IF VEXP = NOM AND DRIVER12 = DONE
THEN VERATING = 1.00

DRIVER11 = DONE;

RULE 78
IF VEXP = HI AND DRIVER12 = DONE
THEN VERATING = .90

DRIVER11 = DONE;

RULE 79
IF VEXP = VHI AND DRIVER12 = DONE
THEN VERATING = .90

DRIVER11 = DONE;

RULE 80
IF VEXP = XTRAHI AND DRIVER12 = DONE
THEN VERATING = .90

DRIVER11 = DONE;

RULE 81
IF LEXP = VLOW AND DRIVER13 = DONE
THEN LRATING 1.14

DRIVER12 = DONE;

RULE 82
IF LEXP = LOW AND DRIVER13 = DONE
THEN LRATING 1.07

DRIVER12 = DONE;

RULE 83
IF LEXP = NOM AND DRIVER13 = DONE
THEN LRATING 1.00

DRIVER12 = DONE;

RULE 84
IF LEXP = HI AND DRIVER13 DONE
THEN LRATING .95

DRIVER12 = DONE;

RULE 85
IF LEXP = VHI AND DRIVER13 = DONE
THEN LRATING = .95

DRIVER12 = DONE;

RULE 86
IF LEXP = XTRAHI AND DRIVER13 = DONE

100

THEN LRATING = .95
DRIVER12 = DONE;

RULE 87
IF MODP = VLOW AND DRIVER14 = DONE
THEN MRATING = 1.24

DRIVER13 = DONE;

RULE 88
IF MODP = LOW AND DRIVER14 = DONE
THEN MRATING = 1.10

DRIVER13 = DONE;

RULE 89
IF MODP = NOM AND DRIVER14 = DONE
THEN MRATING = 1.00

DRIVER13 = DONE;

RULE 90
IF MODP = HI AND DRIVER14 = DONE
THEN MRATING = .91

DRIVER13 = DONE;

RULE 91
IF MODP = VHI AND DRIVER14 = DONE
THEN MRATING = .82

DRIVER13 = DONE;

RULE jz
IF MODP = XTRAHI AND DRIVER14 = DONE
THEN MRATING = .82

DRIVER13 = DONE;

RULE 93
IF TOOL = VLOW AND DRIVER15 = DONE
THEN TORATING = 1.24

DRIVER14 = DONE;

RULE 94
IF TOOL = LOW AND DRIVER15 = DONE
THEN TORATING = 1.10

DRIVER14 = DONE;

RULE 95
IF TOOL = NOM AND DRIVER15 = DONE
THEN TORATING = 1.00

DRIVER14 = DONE;

RULE 96
IF TOOL = HI AND DRIVER15 = DONE

101

THEN TORATING = .91
DRIVER14 = DONE;

RULE 97
IF TOOL = VHI AND DRIVER15 = DONE
THEN TORATING = .83

DRIVER14 = DONE;

RULE 98
IF TOOL = XTRAHI AND DRIVER15 = DONE
THEN TORATING = .83

DRIVER14 = DONE;

RULE 99
IF SCED = VLOW
THEN SCRATING = 1.23

DRIVER15 = DONE;

RULE 100
IF SCED = LOW
THEN SCRATING = 1.08

DRIVER15 = DONE;

RULE 101
IF SCED = NOM
THEN SCRATING = 1.00

DRIVER15 = DONE;

RULE 102
IF SCED = HI
THEN SCRATING = 1.04

DRIVER15 = DONE;

RULE 103
IF SCED = VHI
THEN SCRATING = 1.10

DRIVER15 = DONE;

RULE 104
IF SCED = XTRAHI
THEN SCRATING = 1.10

DRIVER15 DONE;

RULE 105
IF retreive YES
THEN finish = done;

!************************ START QUESTIONS BLOCK ***************

ASK retreive: "Would your like to retreive a previously saved
file?";

102

CHOICES retreive: YES, NO;

ASK file: "Select the file to be retrieved:

ORGANIC = COCOMO Organic Mode File
SEMIDETACHED = COCOMO Semidetached Mode File
EMBEDDED = COCOMO Embedded Mode File
DSSCOC = DSS COCOMO Semidetached Mode File
DSSeP = DSS Function Point File

I;

CHOICES file: ORGANIC, SEMIDETACHED, EMBEDDED, DSSCOC, DSSFP;

ASK model: "Which of the following models would you like to select?

COCOMO = Regular COCOMO
DSSCOC = COCOMO Tailored for DSS environment
DSSFP = Function Point model tailored for DSS

environment

CHOICES model: COCOMO, DSSCOC, DSSFP;

ASK review: "Would you like to review the mode characteristics
again?";
CHOICES review: YES, NO;

ASK mode: "Which of the following modes best identifies your
software project?";
CHOICES mode: ORGANIC, SEMIDETACHED, EMBEDDED;

ASK kdsi value: "What is your best estimation on the number of
thousands of delivered source instructions your program will have?

ASK RELY: "
Ratings RELY: VLOW - effect, slight inconvenience.

LOW - easily recoverable losses.
NOM - moderate, recoverable losses.
HIGH - high financial loss.
VHI AND XTRAHI - risk to human life.

Select a rating for required software reliability (RELY).";
CHOICES RELY: VLOW, LOW, NOM, HI, VHI, XTRAHI;

ASK DATA: "

Ratings DATA: VLOW and LOW - DB bytes/ prog. DSI < 10.
NOM - 10 <= D/P <= 100.
HIGH - 100 <= D/P <=1000.
XTRAHI - D/P >= 1000.

Select a rating for data base size (DATA).";
CHOICES DATA: VLOW, LOW, NOM, HI, VHI, XTRAHI;

103

ASK CPLX:
Ratings CPLX: VLOW - straightline code.

LOW - straightforward nesting of structured
programming (SP).

NOM - mostly simple nesting.
HIGH - highly nested SP operators.
VHI - reentrant and recursive coding.
XTRAHI-microcode level control.

Select a rating for product complexity (CPLX).";
CHOICES CPLX: VLOW, LOW, NOM, HI, VHI, XTRAHI;

ASK TIME: "

Ratings TIME: VLOW, LOW, NOM - 50 % use of available execution
time.

HIGH - 70 %.
VHI - 85 %.
XTRAHI - 95 %.

Select a rating for execution time constraint (TIME).";
CHOICES TIME: VLOW, LOW, NOM, HI, VHI, XTRAHI;

ASK STOR: "
Ratings STOR: VLOW, LOW, NOM- 50 % use of available storage.

HIGH - 70 %.
VHI - 85%.
XTRAHI - 95 %.

Select a rating for main storage constraint (STOR).";
CHOICES STOR: VLOW, LOW, NOM, HI, VHI, XTRAHI;

ASK VIRT: "
Ratings VIRT: VLOW, LOW - major change: 12 months, minor: 1 month.

NOM - major change: 6 months, minor: 2 weeks
HIGH - major: 2 months, minor: 1 week.
VHI, XTRAHI - major: 2 weeks, minor: 2 days.

Select a rating for virtual machine volatility (VIRT).";
CHOICES VIRT: VLOW, LOW, NOM, HI, VHI, XTRAHI;

ASK TURN: "

Ratings TURN: VLOW, LOW - interactive.
NOM - average turnaround < 4 hours.
HIGH - 4-12 hours.
VHI,XTRAHI - >12 hours

Select a rating for computer turnaround time (TURN).";
CHOICES TURN: VLOW, LOW, NOM, HI, VHI, XTRAHI;

ASK ACAP: "
Ratings ACAP: VLOW - 15th percentile.

104

LOW - 35th.
NOM - 55th.
HIGH - 75th.
VHI, XTRAHI - 90th.

Select a rating for analyst capability (ACAP).";
CHOICES ACAP: VLOW, LOW, NOM, HI, VHI, XTRAHI;

ASK AEXP:
Ratings AEXP: V.LOW - <= 4 months experience.

LOW - 1 year.
NOM - 3 years.
HIGH - 6 years.
VHI,XTRAHI - 12 years.

Select a rating for applications experience (AEXP).";
CHOICES AEXP: VLOW, LOW, NOM, HI, VHI, XTRAHI;

ASK PCAP: "
Ratings PCAP: VLOW - 15th percentile.

LOW - 35th.
NOM - 55th.
HIGH - 75th.
VHI, XTRAHI - 90th.

Select a rating for programmer capability (PCAP).";
CHOICES PCAP: VLOW, LOW, NOM, HI, VHI, XTRAHI;

ASK VEXP:
Ratings VEXP: VLOW - <= 1 month.

LOW - 4 months.
NOM - 1 year.
HIGH, VHI, XTRAHI - 3 years.

Select a rating for virtual machine experience (VEXP).";
CHOICES VEXP: VLOW, LOW, NOM, HI, VHI, XTRAHI;

ASK LEXP: "
Ratings LEXP: VLOW - 1 month experience.

LOW - 4 months.
NOM - 1 year.
HIGH, VHI, XTRAHI - 3 years.

Select a rating for programming language experience (LEXP).";
CHOICES LEXP: VLOW, LOW, NOM, HI, VHI, XTRAHI;

ASK MODP:
Ratings MODP: VLOW - no use.

LOW - beginning use.
NOM - some use.

105

HIGH - general use.
VHI, XTRAHI - routine use.

Select a rating for modern programming practices (MODP).";
CHOICES MODP: VLOW, LOW, NOM, HI, VHI, XTRAHI;

ASK TOOL: "

Ratings TOOL: VLOW - basic microprocessor tools.
LOW - -asic mini tools.
NOM - basic midi/maxi tools
HIGH - strong maxi programming, test tools.
VHI, XTRAHI - add requirements, design, management,

documentation tools.

Select a rating for use of software tools (TOOL).";
CHOICES TOOL: VLOW, LOW, NOM, HI, VHI, XTRAHI;

ASK SCED: "
Ratings SCED: VLOW - 75 % of nominal.

LOW - 85 %.
NOM - 100 %.
HIGH - 130 %.
VHI, XTRAHI - 160 %.

Select a rating for required development schedule (SCED).";
CHOICES SCED: VLOW, LOW, NOM, HI, VHI, XTRAHI;

ASK inputs: "
In measuring inputs each unique user data or control

input that is performed by the user within the application
in order to add, delete or update something should be counted.

What is the number of inputs your program will have?
11;•

ASK input cplx: "

Select the input complexity factor:
,;

CHOICES inputcplx: 3,4, 6;

ASK outputs: "
In measuring outputs, each unique user data or control

output procedurally generated that leaves the application
boundary should be counted. This includes reports, messages
to the user, and outputs to other applications.

What is the number of outputs your program will have?

ASK outputcplx: "

106

Outputs are classified in a similar format as inputs.
Use the following chart for classifying outputs:

1-5 data items 6-19 20 or more
referenced data items

0 or 1 file(s) Simple (4) Simple (4) Average (5)

referenced

2-3 files Simple (4) Average (5) Complex (7)

4 or more Average (5) Complex (7) CowLplex (7)
files ref.

Select the output complexity factor:

CHOICES output cplx: 4, 5, 7;

ASK inquiries: "
In measuring inquiries each unique input/output

combination in which an on-line user-defined input causes
and generates an immediate on-line output by the application
should be counted. Many inquiries are simply requests for
specific data from a database.

What is the number of inquiries your program will have?

ASK in inquir_cplx:

Select the input inquiries complexity factor:

CHOICES in inquircplx: 3, 4, 6;

ASK outinquircplx: "
Use the following chart to classify the output

inquiries:

Output Part: 1-5 data items 6-19 20 or more
referenced data items

0 or 1 file(s) Simple (4) Simple (4) Average (5)
referenced

2-3 files Simple (4) Average (5) Complex (7)

4 or more Average (5) Complex (7) Complex (7)
files ref.

107

Select the output inquiries complexity factor:

CHOICES out inquircplx: 4, 5, 7;

ASK files: "
Files are counted in the logical not physical sense.

Therefore, you are not simply counting the number of physical
files within your application. Rather, only files that contain
data stored in logical groupings within the application are
counted as files. These files perform data storage functions for
the application.

What is the number of files your program will have?
I!;

ASK file cplx: "
Select the file complexity factor:

CHOICES filecplx: 7, 10, 15;

ASK interfaces: "
Interfaces involve using data stored by another application

but used by the current application. In measuring interfaces
count every logical file that is sent to, shared with, or
received from another application.

What is the number of interfaces your program will have?

ASK intercplx: "
Select the interface complexity factor:

CHOICES intercplx: 4, 5, 7;

ASK QI: "
Answer each question based on a scale of 0 to 5
where,

0 = no influence 3 = average
1 = incidental 4 = significant
2 = moderate 5 = essential

Ql. Does the system require reliable backup and recovery?

Select the appropriate rating scale:
f;

CHOICES QI: 0, 1, 2, 3, 4, 5;

ASK Q2: "
0 = no influence 3 = average
1 = incidental 4 = significant
2 = moderate 5 = essential

108

Q2. Are data communications required?

Select the appropriate rating scale:

CHOICES Q2: 0, 1, 2, 3, 4, 5;

ASK Q3: "
* 0 = no influence 3 = average

1 = incidental 4 = significant
2 = uuderate 5 = essential

Q3. Are data communications required?

Select the appropriate rating scale:
It;•

CHOICES Q3: 0, 1, 2, 3, 4, 5;

ASK Q4: "
0 = no influence 3 = average
1 = incidental 4 = significant
2 = moderate 5 = essential

Q4. Is performance critical?

Select the appropriate rating scale:
I!

CHOICES Q4: 0, 1, 2, 3, 4, 5;

ASK Q5: "
0 = no influence 3 = average
1 = incidental 4 = significant
2 = moderate 5 = essential

Q5. Will the system run in an existing, heavily utilized
operational environment?

Select the appropriate rating scale:
11;•

CHOICES Q5: 0, 1, 2, 3, 4, 5;

ASK Q6: "
0 = no influence 3 = average
1 = incidental 4 = significant
2 = moderate 5 = essential

Q6. Does the system require on-line data entry?

109

Select the appropriate rating scale:

CHOICES Q6: 0, 1, 2, 3, 4, 5;

ASK Q7: "
0 = no influence 3 = average
1 = incidental 4 = significant
2 = moderate 5 = essential

Q7. Does the on-line data entry require the input
transactions to be built over multiple screens
or operations?

Select the appropriate rating scale:
f;

CHOICES Q7: 0, 1, 2, 3, 4, 5;

ASK Q8: "
0 = no influence 3 = average
1 = incidental 4 = significant
2 = moderate 5 = essential

Q8. Are the master files updated on-line?

Select the appropriate rating scale:

CHOICES Q8: 0, 1, 2, 3, 4, 5;

ASK Q9: "
0 = no influence 3 = average
1 = incidental 4 = significant
2 = moderate 5 = essential

Q9. Are the inputs, outputs, files, or inquiries complex?

Select the appropriate rating scale:
It;

CHOICES Q9: 0, 1, 2, 3, 4, 5;

ASK QIO: "
0 = no influence 3 = average
1 = incidental 4 = significai.t
2 = moderate 5 = essential

110

Ql0. Is the internal processing complex?

Select the appropriate rating scale:
I,

CHOICES Q1O: 0, 1, 2, 3, 4, 5;

ASK QIl: "
0 = no influence 3 = average
1 = incidental 4 = significant
2 = moderate 5 = essential

Qll. Is the code designed to be reusable?

Select the appropriate rating scale:

CHOICES Qll: 0, 1, 2, 3, 4, 5;

ASK Q12: 11
0 = no influence 3 = average
1 = incidental 4 = significant
2 = moderate 5 = essential

Q12. Are conversion and installation included in the design?

Select the appropriate rating scale:
I,

CHOICES Q12: 0, 1, 2, 3, 4, 5;

ASK Q13: "
0 = no influence 3 = average
1 = incidental 4 = significant
2 = moderate 5 = essential

Q13. Is the system designed for multiple installations in
different organizations?

Select the appropriate rating scale:

CHOICES Q13: 0, 1, 2, 3, 4, 5;

ASK Q14: "
0 = no influence 3 = average
1 = incidental 4 = significant
2 = moderate 5 = essential

Q14. Is the application designed to facilitate change and

ease of use by the user?

111

Select the appropriate rating scale:
,I

CHOICES Q14: 0, 1, 2, 3, 4, 5;

B. (ICEM2.KBS) FILE
EXECUTE;
RUNTIME;
BKCOLOR=3;
ACTIONS
LOADFACTS fixvalue
FIND spreadsheet;

RULE 1
IF retreive = YES and file = ORGANIC
THEN DISPLAY "

(CALLING SPREADSHEET)"
WORKSHEET VPP
WORKON c:\vpexp, c:\vpexp\organic
continue = NO
spreadsheet = found;

RULE 2
IF retreive = YES and file = SEMIDETACHED
THEN DISPLAY "

(CALLING SPREADSHEET)"
WORKSHEET VPP
WORKON c:\vpexp, c:\vpexp\semidet
continue = NO
spreadsheet = found;

RULE 3
IF retreive = YES and file = EMBEDDED
THEN DISPLAY"

(CALLING SPREADSHEET)"
WORKSHEET VPP
WORKON c:\vpexp, c:\vpexp\embedded
continue = NO
spreadsheet = found;

RULE 4
IF retreive = YES and file = DSSCOC
THEN DISPLAY"

(CALLING SPREADSHEET)"
WORKSHEET VPP
WORKON c:\vpexp, c:\vpexp\dsscoc
continue = NO
spreadsheet = found;

RULE 5
IF retreive = YES and file = DSSFP
THEN DISPLAY"

(CALLING SPREADSHEET)"
WORKSHEET VPP

112

WORKON c:\vpexp, c:\vpexp\dssfp
continue = NO
spreadsheet = found;

RULE 6

IF retreive = NO and mode = ORGANIC
THEN DISPLAY "

VALUES SAVED!"
COLOR = 30
DISPLAY"

(PRESS ANY KEY TO VIEW SPREADSHEET CALCULATIONS) ~"
WORKSHEET VPP
WORKON c:'\vpexp, c:\vpexp\organic
spreadsheet = found;

RULE 7
IF retreive = NO and mode = SEMIDETACHED
THEN DISPLAY "

VALUES SAVED!"
COLOR = 30
DISPLAY"

(PRESS ANY KEY TO VIEW SPREADSHEET CALCULATIONS)-"
WORKSHEET VPP
WORKON c:\vpexp, c:\vpexp\semidet
spreadsheet = found;

RULE 8
IF retreive = NO and mode = EMBEDDED
THEN DISPLAY "

VALUES SAVED!"
COLOR = 30
DISPLAY"

(PRESS ANY KEY TO VIEW SPREADSHEET CALCULATIONS)-"
WORKSHEET VPP

113

WORKON c: \vpexp, c: \vpexp\embedded
spreadsheet = found;

RULE 9
IF retreive NO and model = DSSCOC
THEN DISPLAY "

VALUES SAVED!"
COLOR = 30
DISPLAY"

(PRESS ANY KEY TO VIEW SPREADSHEET CALCULATIONS)-"
WORKSHEET VPP
WORKON c:\vpexp, c:\vpexp\dsscoc
spreadsheet = found;

RULE 10
IF retreive = NO and model = DSSFP
THEN DISPLAY "

VALUES SAVED!"
COLOR = 30
DISPLAY"

(PRESS ANY KEY TO VIEW SPREADSHEET CALCULATIONS)-"
WORKSHEET VPP
WORKON c:\vpexp, c:\vpexp\dssfp
spreadsheet = found;

114

LIST OF REFERENCES

1. Keen, P.G. and Morton, M.S., Decision Support Systems, An
Organizational Perspective, Addison-Wesley, Reading,
Massachusetts, 1978.

2. Basili, V.R., "Resource Models," in Models and Metrics for
Software Managements and Engineering, IEEE Computer Society
Press, pp. 4-9, 1980.

3. Londeix, B., Cost Estimation for Software Development,
Addison-Wesley, 1987.

4. Thibodeau, R., "An Evaluation of Software Cost Estimating
Models," Final Technical Report, RADC-TR-81-144, General
Research Corporation, June 1981.

5. Kemerer, C.F., "An empirical validation of software cost
models," Communications of the ACM, Vol. 30, No. 5, May
1987.

6. Mohanty, S. N. "Software cost estimation: present and
future," Software Practice and Experience, Vol. 11 (1981).

7. Basili, V.R., Selby, R.W. Jr., and Phillips, T.Y., "Metric
Analysis and Data Validation Across Fortran Projects," IEEE
Transactions on Software Engineering, Vol. SE-9, No. 6,
November 1983.

8. Jones, T.C., "Measuring programming quality and
productivity," IBM Systems Journal, Vol. 17, No. 1, 1978.

9. DeMarco, T., Controlling Software Projects, Prentice-Hall,
Englewood Cliffs, New Jersey, 1982.

10. Conte, S.D., Dunsmore, H.E., Shen, V.Y., Software
Engineering Metrics and Models, Benjamin/Cummings, 1986.

11. Halstead, M.H., Elements of Software Science, Elsevier
North-Holland, Amsterdam, 1977.

12. Hamer, P.G., and Frewin, G.D., "M.H. Halstead's Software
Science--A Critical Examination," Software Engineering,
IEEE, 1982, pp. 197-206.

115

13. Navlakha, J., "Software Productivity Metrics: Some Candi-
dates and their evaluation," 1986 National Computer
Conference Proceedings, Vol. 55, AFIPS.

14. Li, H.F., and Cheung, W.K., "An Empirical Study of Software
Metrics," IEEE Transactions on Software Engineering, Vol.
SE-13, No. 6, June 1987.

15. Shen, V.Y., Conte, S.D., and Dunsmore, H.E., "Software
Science Revisited: A Critical Analysis of the Theory and
its Empirical Support," IEEE Transactions on Software
Engineering, Vol. SE-9, No. 2, March 1983.

16. Basili, V.R., Models and Metrics for Software Management
and Engineering, IEEE Catalog No. EHO-167.7, Institute of
Electrical and Electronics Engineers, 1980.

17. Albrecht, A.J., "Measuring Application Development
Productivity", Proceedings of the Joint Share/Guide/IBM
Application Development Symposium, pp. 83-92, October 1979.

18. Albrecht, A.J. and Gaffney (Jr.), J.E., "Software Function
Source Lines of Code and Development Effort Prediction: A
Software Science Validation," IEEE Transactions on Software
Engineering, Vol. SE-9, No. 6, pp. 639-647, November 1983.

19. Boehm, B.W., Software Engineering Economics, Englewood
Cliffs, New Jersey: Prentice-Hall, 1981.

20. Pressman, R.S., Software Engineering: A Practitioner's
Approach, 2nd edition, McGraw-Hill, 1987.

21. Boehm, B.W., "Software Engineering Economics," IEEE
Transactions on Software Engineering, Vol. SE-10, No. 1,
pp. 4-21, January 1984.

22. Bailey, E.K. and others, "A Descriptive Evaluation of
Automated Software Cost-Estimation Models," IDA paper p-
1979, contract MDA 903-84-C-0031, Institute for Defense
Analysis, October 1986.

23. Nelson, E.A., Management Handbook for the Estimation of
Computer Programming Costs, AD-A648750, Systems Development
Corp., October 31, 1966.

24. Wolverton, R.W., "The Cost of Developing Large-Scale
Software," IEEE Transactions on Computers, June 1974, pp.
615-636.

116

25. Putnam, L.H., "A General Empirical Solution to the Macro
Software Sizing and Estimating Problem", IEEE Transactions
on Software Engineering, July 1978, pp. 345-361.

26. Putnam, L.H., and Fitzsimmons, A., "Estimating Software
Costs," Datamation, September 1979, pp. 189-198, October
1979, pp. 171-178 and November 1979, pp. 137-140.

27. Putnam, L.H., Software Cost Estimating and Life-Cycle
Control: Getting the Software Numbers, IEEE Catalog No.
EHO 165-1, Institute of Electrical and Electronics
Engineers, 1980.

28. Wiener-Ehrlich, W.K., Hamrick, J.R. and Rupolo, V.F,
"Modeling software behavior in terms of a formal lifecycle
curve: implication for software maintenance," IEEE
Transactions on Software Engineering, 10(4), pp. 376-383,
1984.

29. Herd, J.R., Postak,J.N., Russell, W.E., and Stewart, K.R.,
"Software Cost Estimation Study-Study Results," Final
Technical Report, RADC-TR-77-220, AD-A042264, Vol. I (of
two), Doty Associates, Inc., Rockville, Maryland, June
1977.

30. Freiman, F.R., and Park, R.E., "PRICE Software Model-
Version 3: An Overview," Proceedings, IEEE-PINY Workshop
on Quantitative Software Models, IEEE Catalog No. TH0067-9,
October 1979, pp. 32-41.

31. Walston, C.E., and Felix, C.P., "A Method of Programming
Measurement and Estimation," IBM Systems Journal, Vol. 16,
No. 1, 1977, pp. 54-73.

32. Black, R.K.D., Curnow, R.P., Katz, R., and Gray, M.D., "BCS
Software Production Data," Final Technical Report, RADC-TR-
77-116, Boeing Computer Services, Inc., March 1977. NTIS
No. AD-A039852.

33. Carriere, W.M., and Thibodeau, R., "Development of a
Logistics Software Cost Estimating Technique for Foreign
Military Sales," Report CR-3-839, General Research Corp.,
June 1979.

34. Bailey, J.W., and Basili, V.R., "A Meta-Model for Software
Development Resource Expenditures," Proceedings of the
Fifth International Conference on Software Engineering,
IEEE/ACM/NBS, March 1981, pp. 107-116.

35. Dircks, H.F., "SOFCOST: Grumman's software cost
eliminating model," in IEEE NAECON 1981, May 1981.

117

36. Tausworthe, R.C., "Deep Space Network Software Cost
Estimation Model," Jet Propulsion Laboratory, Pasadena, CA,
JPL Publication 81-7, April 1981.

37. Jensen, R.W., "An improved macrolevel software development
resource estimation model," in Proceedings of the 5th ISPA
Conference, April 1983, pp. 88-92.

38. Jensen, R.W., and Lucas, S., "Sensitivity analysis of the
Jensen software model," in Proceedings of the 5th ISPA
Conference, April 1983, pp. 384-389.

39. Rubin, H.A., "Macro-estimation of Software Development
Parameters; The Estimacs System," Softfair Proceedings,
IEEE, July 1983, pp. 110-118.

40. Rubin, H.A., "A Comparison of Cost Estimation Tools,"
Proceeding, 8th International Conference of Software
Engineering, August 1985, pp. 174-180.

41. Jones, T.C., Programming Productivity, McGraw-Hill, 1986.

42. Gordon Group, Before You Leap, Users Guide, Gordon Group
1986.

43. BIS, BIS Estimator User Manual, Version 4.4, BIS Applied
SystemsLtd, London, UK, 1987.

44. Dreger, J.B., Function Point Analysis, Prentice-Hall,
Englewood Cliffs, New Jersey, 1989.

45. Sprague, R.H.Jr., and Watson, H.J., Decision Support
Systems, 2nd edition, Prentice Hall, 1989.

46. Paperback Software, VP-Expert Rule-Based Expert System
Development Tool, 1989.

47. Paperback Software, VP-Planner Plus: Enhanced Spreadsheet,
Database, Graphics, and Report Generation, 1987.

48. Verner, J., and Tate, G., "Estimating Size and Effort in
Fourth-Generation Development," IEEE Software, July 1988,
pp. 15-22.

118

